linux/include/linux/page-flags.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Macros for manipulating and testing page->flags
 */

#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H

#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mmdebug.h>
#ifndef __GENERATING_BOUNDS_H
#include <linux/mm_types.h>
#include <generated/bounds.h>
#endif /* !__GENERATING_BOUNDS_H */

/*
 * Various page->flags bits:
 *
 * PG_reserved is set for special pages. The "struct page" of such a page
 * should in general not be touched (e.g. set dirty) except by its owner.
 * Pages marked as PG_reserved include:
 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
 *   initrd, HW tables)
 * - Pages reserved or allocated early during boot (before the page allocator
 *   was initialized). This includes (depending on the architecture) the
 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
 *   be given to the page allocator.
 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
 *   to read/write these pages might end badly. Don't touch!
 * - The zero page(s)
 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
 *   control pages, vmcoreinfo)
 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
 *   not marked PG_reserved (as they might be in use by somebody else who does
 *   not respect the caching strategy).
 * - MCA pages on ia64
 * - Pages holding CPU notes for POWER Firmware Assisted Dump
 * - Device memory (e.g. PMEM, DAX, HMM)
 * Some PG_reserved pages will be excluded from the hibernation image.
 * PG_reserved does in general not hinder anybody from dumping or swapping
 * and is no longer required for remap_pfn_range(). ioremap might require it.
 * Consequently, PG_reserved for a page mapped into user space can indicate
 * the zero page, the vDSO, MMIO pages or device memory.
 *
 * The PG_private bitflag is set on pagecache pages if they contain filesystem
 * specific data (which is normally at page->private). It can be used by
 * private allocations for its own usage.
 *
 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
 * is set before writeback starts and cleared when it finishes.
 *
 * PG_locked also pins a page in pagecache, and blocks truncation of the file
 * while it is held.
 *
 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
 * to become unlocked.
 *
 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
 * usually PageAnon or shmem pages but please note that even anonymous pages
 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
 * a result of MADV_FREE).
 *
 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
 * file-backed pagecache (see mm/vmscan.c).
 *
 * PG_arch_1 is an architecture specific page state bit.  The generic code
 * guarantees that this bit is cleared for a page when it first is entered into
 * the page cache.
 *
 * PG_hwpoison indicates that a page got corrupted in hardware and contains
 * data with incorrect ECC bits that triggered a machine check. Accessing is
 * not safe since it may cause another machine check. Don't touch!
 */

/*
 * Don't use the pageflags directly.  Use the PageFoo macros.
 *
 * The page flags field is split into two parts, the main flags area
 * which extends from the low bits upwards, and the fields area which
 * extends from the high bits downwards.
 *
 *  | FIELD | ... | FLAGS |
 *  N-1           ^       0
 *               (NR_PAGEFLAGS)
 *
 * The fields area is reserved for fields mapping zone, node (for NUMA) and
 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
 */
enum pageflags {};

#define PAGEFLAGS_MASK

#ifndef __GENERATING_BOUNDS_H

#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);

/*
 * Return the real head page struct iff the @page is a fake head page, otherwise
 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
 */
static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
{}
#else
static inline const struct page *page_fixed_fake_head(const struct page *page)
{
	return page;
}
#endif

static __always_inline int page_is_fake_head(const struct page *page)
{}

static __always_inline unsigned long _compound_head(const struct page *page)
{}

#define compound_head(page)

/**
 * page_folio - Converts from page to folio.
 * @p: The page.
 *
 * Every page is part of a folio.  This function cannot be called on a
 * NULL pointer.
 *
 * Context: No reference, nor lock is required on @page.  If the caller
 * does not hold a reference, this call may race with a folio split, so
 * it should re-check the folio still contains this page after gaining
 * a reference on the folio.
 * Return: The folio which contains this page.
 */
#define page_folio(p)

/**
 * folio_page - Return a page from a folio.
 * @folio: The folio.
 * @n: The page number to return.
 *
 * @n is relative to the start of the folio.  This function does not
 * check that the page number lies within @folio; the caller is presumed
 * to have a reference to the page.
 */
#define folio_page(folio, n)

static __always_inline int PageTail(const struct page *page)
{}

static __always_inline int PageCompound(const struct page *page)
{}

#define PAGE_POISON_PATTERN
static inline int PagePoisoned(const struct page *page)
{}

#ifdef CONFIG_DEBUG_VM
void page_init_poison(struct page *page, size_t size);
#else
static inline void page_init_poison(struct page *page, size_t size)
{
}
#endif

static const unsigned long *const_folio_flags(const struct folio *folio,
		unsigned n)
{}

static unsigned long *folio_flags(struct folio *folio, unsigned n)
{}

/*
 * Page flags policies wrt compound pages
 *
 * PF_POISONED_CHECK
 *     check if this struct page poisoned/uninitialized
 *
 * PF_ANY:
 *     the page flag is relevant for small, head and tail pages.
 *
 * PF_HEAD:
 *     for compound page all operations related to the page flag applied to
 *     head page.
 *
 * PF_NO_TAIL:
 *     modifications of the page flag must be done on small or head pages,
 *     checks can be done on tail pages too.
 *
 * PF_NO_COMPOUND:
 *     the page flag is not relevant for compound pages.
 *
 * PF_SECOND:
 *     the page flag is stored in the first tail page.
 */
#define PF_POISONED_CHECK(page)
#define PF_ANY
#define PF_HEAD
#define PF_NO_TAIL
#define PF_NO_COMPOUND
#define PF_SECOND

/* Which page is the flag stored in */
#define FOLIO_PF_ANY
#define FOLIO_PF_HEAD
#define FOLIO_PF_NO_TAIL
#define FOLIO_PF_NO_COMPOUND
#define FOLIO_PF_SECOND

#define FOLIO_HEAD_PAGE
#define FOLIO_SECOND_PAGE

/*
 * Macros to create function definitions for page flags
 */
#define FOLIO_TEST_FLAG(name, page)

#define FOLIO_SET_FLAG(name, page)

#define FOLIO_CLEAR_FLAG(name, page)

#define __FOLIO_SET_FLAG(name, page)

#define __FOLIO_CLEAR_FLAG(name, page)

#define FOLIO_TEST_SET_FLAG(name, page)

#define FOLIO_TEST_CLEAR_FLAG(name, page)

#define FOLIO_FLAG(name, page)

#define TESTPAGEFLAG(uname, lname, policy)

#define SETPAGEFLAG(uname, lname, policy)

#define CLEARPAGEFLAG(uname, lname, policy)

#define __SETPAGEFLAG(uname, lname, policy)

#define __CLEARPAGEFLAG(uname, lname, policy)

#define TESTSETFLAG(uname, lname, policy)

#define TESTCLEARFLAG(uname, lname, policy)

#define PAGEFLAG(uname, lname, policy)

#define __PAGEFLAG(uname, lname, policy)

#define TESTSCFLAG(uname, lname, policy)

#define FOLIO_TEST_FLAG_FALSE(name)
#define FOLIO_SET_FLAG_NOOP(name)
#define FOLIO_CLEAR_FLAG_NOOP(name)
#define __FOLIO_SET_FLAG_NOOP(name)
#define __FOLIO_CLEAR_FLAG_NOOP(name)
#define FOLIO_TEST_SET_FLAG_FALSE(name)
#define FOLIO_TEST_CLEAR_FLAG_FALSE(name)

#define FOLIO_FLAG_FALSE(name)

#define TESTPAGEFLAG_FALSE(uname, lname)

#define SETPAGEFLAG_NOOP(uname, lname)

#define CLEARPAGEFLAG_NOOP(uname, lname)

#define __CLEARPAGEFLAG_NOOP(uname, lname)

#define TESTSETFLAG_FALSE(uname, lname)

#define TESTCLEARFLAG_FALSE(uname, lname)

#define PAGEFLAG_FALSE(uname, lname)

#define TESTSCFLAG_FALSE(uname, lname)

__PAGEFLAG()
FOLIO_FLAG()
FOLIO_FLAG()
	FOLIO_TEST_CLEAR_FLAG()
	__FOLIO_SET_FLAG()
PAGEFLAG() TESTSCFLAG()
	__CLEARPAGEFLAG()
PAGEFLAG() __CLEARPAGEFLAG()
	TESTCLEARFLAG()
FOLIO_FLAG()
	__FOLIO_CLEAR_FLAG()
	FOLIO_TEST_CLEAR_FLAG()
PAGEFLAG()
	TESTCLEARFLAG()
PAGEFLAG()	   /* Used by some filesystems */

/* Xen */
PAGEFLAG()
	TESTSCFLAG()
PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG()
	TESTCLEARFLAG()

PAGEFLAG()
	__CLEARPAGEFLAG()
	__SETPAGEFLAG()
FOLIO_FLAG()
	__FOLIO_CLEAR_FLAG()
	__FOLIO_SET_FLAG()

/*
 * Private page markings that may be used by the filesystem that owns the page
 * for its own purposes.
 * - PG_private and PG_private_2 cause release_folio() and co to be invoked
 */
PAGEFLAG()
PAGEFLAG() TESTSCFLAG()

/* owner_2 can be set on tail pages for anon memory */
FOLIO_FLAG()

/*
 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 * risky: they bypass page accounting.
 */
TESTPAGEFLAG()
	TESTSCFLAG()
PAGEFLAG()

/* PG_readahead is only used for reads; PG_reclaim is only for writes */
PAGEFLAG()
	TESTCLEARFLAG()
FOLIO_FLAG()
	FOLIO_TEST_CLEAR_FLAG()

#ifdef CONFIG_HIGHMEM
/*
 * Must use a macro here due to header dependency issues. page_zone() is not
 * available at this point.
 */
#define PageHighMem
#define folio_test_highmem
#else
PAGEFLAG_FALSE(HighMem, highmem)
#endif

#ifdef CONFIG_SWAP
static __always_inline bool folio_test_swapcache(const struct folio *folio)
{}

FOLIO_SET_FLAG()
FOLIO_CLEAR_FLAG()
#else
FOLIO_FLAG_FALSE(swapcache)
#endif

FOLIO_FLAG()
	__FOLIO_CLEAR_FLAG()
	FOLIO_TEST_CLEAR_FLAG()

#ifdef CONFIG_MMU
FOLIO_FLAG()
	__FOLIO_CLEAR_FLAG()
	FOLIO_TEST_CLEAR_FLAG()
	FOLIO_TEST_SET_FLAG()
#else
FOLIO_FLAG_FALSE(mlocked)
	__FOLIO_CLEAR_FLAG_NOOP(mlocked)
	FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
	FOLIO_TEST_SET_FLAG_FALSE(mlocked)
#endif

#ifdef CONFIG_MEMORY_FAILURE
PAGEFLAG()
TESTSCFLAG()
#define __PG_HWPOISON
#else
PAGEFLAG_FALSE(HWPoison, hwpoison)
#define __PG_HWPOISON
#endif

#ifdef CONFIG_PAGE_IDLE_FLAG
#ifdef CONFIG_64BIT
FOLIO_TEST_FLAG()
FOLIO_SET_FLAG()
FOLIO_TEST_CLEAR_FLAG()
FOLIO_FLAG()
#endif
/* See page_idle.h for !64BIT workaround */
#else /* !CONFIG_PAGE_IDLE_FLAG */
FOLIO_FLAG_FALSE(young)
FOLIO_TEST_CLEAR_FLAG_FALSE(young)
FOLIO_FLAG_FALSE(idle)
#endif

/*
 * PageReported() is used to track reported free pages within the Buddy
 * allocator. We can use the non-atomic version of the test and set
 * operations as both should be shielded with the zone lock to prevent
 * any possible races on the setting or clearing of the bit.
 */
__PAGEFLAG()

#ifdef CONFIG_MEMORY_HOTPLUG
PAGEFLAG()
#else
PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
#endif

/*
 * On an anonymous folio mapped into a user virtual memory area,
 * folio->mapping points to its anon_vma, not to a struct address_space;
 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 *
 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 * bit; and then folio->mapping points, not to an anon_vma, but to a private
 * structure which KSM associates with that merged page.  See ksm.h.
 *
 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 * page and then folio->mapping points to a struct movable_operations.
 *
 * Please note that, confusingly, "folio_mapping" refers to the inode
 * address_space which maps the folio from disk; whereas "folio_mapped"
 * refers to user virtual address space into which the folio is mapped.
 *
 * For slab pages, since slab reuses the bits in struct page to store its
 * internal states, the folio->mapping does not exist as such, nor do
 * these flags below.  So in order to avoid testing non-existent bits,
 * please make sure that folio_test_slab(folio) actually evaluates to
 * false before calling the following functions (e.g., folio_test_anon).
 * See mm/slab.h.
 */
#define PAGE_MAPPING_ANON
#define PAGE_MAPPING_MOVABLE
#define PAGE_MAPPING_KSM
#define PAGE_MAPPING_FLAGS

/*
 * Different with flags above, this flag is used only for fsdax mode.  It
 * indicates that this page->mapping is now under reflink case.
 */
#define PAGE_MAPPING_DAX_SHARED

static __always_inline bool folio_mapping_flags(const struct folio *folio)
{}

static __always_inline bool PageMappingFlags(const struct page *page)
{}

static __always_inline bool folio_test_anon(const struct folio *folio)
{}

static __always_inline bool PageAnon(const struct page *page)
{}

static __always_inline bool __folio_test_movable(const struct folio *folio)
{}

static __always_inline bool __PageMovable(const struct page *page)
{}

#ifdef CONFIG_KSM
/*
 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 * which KSM maps into multiple mms, wherever identical anonymous page content
 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 * anon_vma, but to that page's node of the stable tree.
 */
static __always_inline bool folio_test_ksm(const struct folio *folio)
{}

static __always_inline bool PageKsm(const struct page *page)
{}
#else
TESTPAGEFLAG_FALSE(Ksm, ksm)
#endif

u64 stable_page_flags(const struct page *page);

/**
 * folio_xor_flags_has_waiters - Change some folio flags.
 * @folio: The folio.
 * @mask: Bits set in this word will be changed.
 *
 * This must only be used for flags which are changed with the folio
 * lock held.  For example, it is unsafe to use for PG_dirty as that
 * can be set without the folio lock held.  It can also only be used
 * on flags which are in the range 0-6 as some of the implementations
 * only affect those bits.
 *
 * Return: Whether there are tasks waiting on the folio.
 */
static inline bool folio_xor_flags_has_waiters(struct folio *folio,
		unsigned long mask)
{}

/**
 * folio_test_uptodate - Is this folio up to date?
 * @folio: The folio.
 *
 * The uptodate flag is set on a folio when every byte in the folio is
 * at least as new as the corresponding bytes on storage.  Anonymous
 * and CoW folios are always uptodate.  If the folio is not uptodate,
 * some of the bytes in it may be; see the is_partially_uptodate()
 * address_space operation.
 */
static inline bool folio_test_uptodate(const struct folio *folio)
{}

static inline bool PageUptodate(const struct page *page)
{}

static __always_inline void __folio_mark_uptodate(struct folio *folio)
{}

static __always_inline void folio_mark_uptodate(struct folio *folio)
{}

static __always_inline void __SetPageUptodate(struct page *page)
{}

static __always_inline void SetPageUptodate(struct page *page)
{}

CLEARPAGEFLAG()

void __folio_start_writeback(struct folio *folio, bool keep_write);
void set_page_writeback(struct page *page);

#define folio_start_writeback(folio)
#define folio_start_writeback_keepwrite(folio)

static __always_inline bool folio_test_head(const struct folio *folio)
{}

static __always_inline int PageHead(const struct page *page)
{}

__SETPAGEFLAG()
__CLEARPAGEFLAG()
CLEARPAGEFLAG()

/**
 * folio_test_large() - Does this folio contain more than one page?
 * @folio: The folio to test.
 *
 * Return: True if the folio is larger than one page.
 */
static inline bool folio_test_large(const struct folio *folio)
{}

static __always_inline void set_compound_head(struct page *page, struct page *head)
{}

static __always_inline void clear_compound_head(struct page *page)
{}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{}
FOLIO_FLAG()
FOLIO_TEST_FLAG()
/*
 * PG_partially_mapped is protected by deferred_split split_queue_lock,
 * so its safe to use non-atomic set/clear.
 */
__FOLIO_SET_FLAG()
__FOLIO_CLEAR_FLAG()
#else
FOLIO_FLAG_FALSE(large_rmappable)
FOLIO_TEST_FLAG_FALSE(partially_mapped)
__FOLIO_SET_FLAG_NOOP(partially_mapped)
__FOLIO_CLEAR_FLAG_NOOP(partially_mapped)
#endif

#define PG_head_mask

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for
 * normal or transparent huge pages.
 *
 * PageTransHuge() returns true for both transparent huge and
 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 * called only in the core VM paths where hugetlbfs pages can't exist.
 */
static inline int PageTransHuge(const struct page *page)
{}

/*
 * PageTransCompound returns true for both transparent huge pages
 * and hugetlbfs pages, so it should only be called when it's known
 * that hugetlbfs pages aren't involved.
 */
static inline int PageTransCompound(const struct page *page)
{}

/*
 * PageTransTail returns true for both transparent huge pages
 * and hugetlbfs pages, so it should only be called when it's known
 * that hugetlbfs pages aren't involved.
 */
static inline int PageTransTail(const struct page *page)
{}
#else
TESTPAGEFLAG_FALSE(TransHuge, transhuge)
TESTPAGEFLAG_FALSE(TransCompound, transcompound)
TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
TESTPAGEFLAG_FALSE(TransTail, transtail)
#endif

#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
/*
 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
 * compound page.
 *
 * This flag is set by hwpoison handler.  Cleared by THP split or free page.
 */
PAGEFLAG()
	TESTSCFLAG()
#else
PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
#endif

/*
 * For pages that do not use mapcount, page_type may be used.
 * The low 24 bits of pagetype may be used for your own purposes, as long
 * as you are careful to not affect the top 8 bits.  The low bits of
 * pagetype will be overwritten when you clear the page_type from the page.
 */
enum pagetype {};

static inline bool page_type_has_type(int page_type)
{}

/* This takes a mapcount which is one more than page->_mapcount */
static inline bool page_mapcount_is_type(unsigned int mapcount)
{}

static inline bool page_has_type(const struct page *page)
{}

#define FOLIO_TYPE_OPS(lname, fname)

#define PAGE_TYPE_OPS(uname, lname, fname)

/*
 * PageBuddy() indicates that the page is free and in the buddy system
 * (see mm/page_alloc.c).
 */
PAGE_TYPE_OPS()

/*
 * PageOffline() indicates that the page is logically offline although the
 * containing section is online. (e.g. inflated in a balloon driver or
 * not onlined when onlining the section).
 * The content of these pages is effectively stale. Such pages should not
 * be touched (read/write/dump/save) except by their owner.
 *
 * When a memory block gets onlined, all pages are initialized with a
 * refcount of 1 and PageOffline(). generic_online_page() will
 * take care of clearing PageOffline().
 *
 * If a driver wants to allow to offline unmovable PageOffline() pages without
 * putting them back to the buddy, it can do so via the memory notifier by
 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
 * pages (now with a reference count of zero) are treated like free (unmanaged)
 * pages, allowing the containing memory block to get offlined. A driver that
 * relies on this feature is aware that re-onlining the memory block will
 * require not giving them to the buddy via generic_online_page().
 *
 * Memory offlining code will not adjust the managed page count for any
 * PageOffline() pages, treating them like they were never exposed to the
 * buddy using generic_online_page().
 *
 * There are drivers that mark a page PageOffline() and expect there won't be
 * any further access to page content. PFN walkers that read content of random
 * pages should check PageOffline() and synchronize with such drivers using
 * page_offline_freeze()/page_offline_thaw().
 */
PAGE_TYPE_OPS()

extern void page_offline_freeze(void);
extern void page_offline_thaw(void);
extern void page_offline_begin(void);
extern void page_offline_end(void);

/*
 * Marks pages in use as page tables.
 */
PAGE_TYPE_OPS()

/*
 * Marks guardpages used with debug_pagealloc.
 */
PAGE_TYPE_OPS()

FOLIO_TYPE_OPS()

/**
 * PageSlab - Determine if the page belongs to the slab allocator
 * @page: The page to test.
 *
 * Context: Any context.
 * Return: True for slab pages, false for any other kind of page.
 */
static inline bool PageSlab(const struct page *page)
{}

#ifdef CONFIG_HUGETLB_PAGE
FOLIO_TYPE_OPS()
#else
FOLIO_TEST_FLAG_FALSE(hugetlb)
#endif

PAGE_TYPE_OPS()

/*
 * Mark pages that has to be accepted before touched for the first time.
 *
 * Serialized with zone lock.
 */
PAGE_TYPE_OPS()

/**
 * PageHuge - Determine if the page belongs to hugetlbfs
 * @page: The page to test.
 *
 * Context: Any context.
 * Return: True for hugetlbfs pages, false for anon pages or pages
 * belonging to other filesystems.
 */
static inline bool PageHuge(const struct page *page)
{}

/*
 * Check if a page is currently marked HWPoisoned. Note that this check is
 * best effort only and inherently racy: there is no way to synchronize with
 * failing hardware.
 */
static inline bool is_page_hwpoison(const struct page *page)
{}

bool is_free_buddy_page(const struct page *page);

PAGEFLAG(Isolated, isolated, PF_ANY);

static __always_inline int PageAnonExclusive(const struct page *page)
{}

static __always_inline void SetPageAnonExclusive(struct page *page)
{}

static __always_inline void ClearPageAnonExclusive(struct page *page)
{}

static __always_inline void __ClearPageAnonExclusive(struct page *page)
{}

#ifdef CONFIG_MMU
#define __PG_MLOCKED
#else
#define __PG_MLOCKED
#endif

/*
 * Flags checked when a page is freed.  Pages being freed should not have
 * these flags set.  If they are, there is a problem.
 */
#define PAGE_FLAGS_CHECK_AT_FREE

/*
 * Flags checked when a page is prepped for return by the page allocator.
 * Pages being prepped should not have these flags set.  If they are set,
 * there has been a kernel bug or struct page corruption.
 *
 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 * alloc-free cycle to prevent from reusing the page.
 */
#define PAGE_FLAGS_CHECK_AT_PREP

/*
 * Flags stored in the second page of a compound page.  They may overlap
 * the CHECK_AT_FREE flags above, so need to be cleared.
 */
#define PAGE_FLAGS_SECOND

#define PAGE_FLAGS_PRIVATE
/**
 * folio_has_private - Determine if folio has private stuff
 * @folio: The folio to be checked
 *
 * Determine if a folio has private stuff, indicating that release routines
 * should be invoked upon it.
 */
static inline int folio_has_private(const struct folio *folio)
{}

#undef PF_ANY
#undef PF_HEAD
#undef PF_NO_TAIL
#undef PF_NO_COMPOUND
#undef PF_SECOND
#endif /* !__GENERATING_BOUNDS_H */

#endif	/* PAGE_FLAGS_H */