/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _RESCTRL_H #define _RESCTRL_H #include <linux/cacheinfo.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/pid.h> /* CLOSID, RMID value used by the default control group */ #define RESCTRL_RESERVED_CLOSID … #define RESCTRL_RESERVED_RMID … #define RESCTRL_PICK_ANY_CPU … #ifdef CONFIG_PROC_CPU_RESCTRL int proc_resctrl_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); #endif /* max value for struct rdt_domain's mbps_val */ #define MBA_MAX_MBPS … /** * enum resctrl_conf_type - The type of configuration. * @CDP_NONE: No prioritisation, both code and data are controlled or monitored. * @CDP_CODE: Configuration applies to instruction fetches. * @CDP_DATA: Configuration applies to reads and writes. */ enum resctrl_conf_type { … }; #define CDP_NUM_TYPES … /* * Event IDs, the values match those used to program IA32_QM_EVTSEL before * reading IA32_QM_CTR on RDT systems. */ enum resctrl_event_id { … }; /** * struct resctrl_staged_config - parsed configuration to be applied * @new_ctrl: new ctrl value to be loaded * @have_new_ctrl: whether the user provided new_ctrl is valid */ struct resctrl_staged_config { … }; enum resctrl_domain_type { … }; /** * struct rdt_domain_hdr - common header for different domain types * @list: all instances of this resource * @id: unique id for this instance * @type: type of this instance * @cpu_mask: which CPUs share this resource */ struct rdt_domain_hdr { … }; /** * struct rdt_ctrl_domain - group of CPUs sharing a resctrl control resource * @hdr: common header for different domain types * @plr: pseudo-locked region (if any) associated with domain * @staged_config: parsed configuration to be applied * @mbps_val: When mba_sc is enabled, this holds the array of user * specified control values for mba_sc in MBps, indexed * by closid */ struct rdt_ctrl_domain { … }; /** * struct rdt_mon_domain - group of CPUs sharing a resctrl monitor resource * @hdr: common header for different domain types * @ci: cache info for this domain * @rmid_busy_llc: bitmap of which limbo RMIDs are above threshold * @mbm_total: saved state for MBM total bandwidth * @mbm_local: saved state for MBM local bandwidth * @mbm_over: worker to periodically read MBM h/w counters * @cqm_limbo: worker to periodically read CQM h/w counters * @mbm_work_cpu: worker CPU for MBM h/w counters * @cqm_work_cpu: worker CPU for CQM h/w counters */ struct rdt_mon_domain { … }; /** * struct resctrl_cache - Cache allocation related data * @cbm_len: Length of the cache bit mask * @min_cbm_bits: Minimum number of consecutive bits to be set. * The value 0 means the architecture can support * zero CBM. * @shareable_bits: Bitmask of shareable resource with other * executing entities * @arch_has_sparse_bitmasks: True if a bitmask like f00f is valid. * @arch_has_per_cpu_cfg: True if QOS_CFG register for this cache * level has CPU scope. */ struct resctrl_cache { … }; /** * enum membw_throttle_mode - System's memory bandwidth throttling mode * @THREAD_THROTTLE_UNDEFINED: Not relevant to the system * @THREAD_THROTTLE_MAX: Memory bandwidth is throttled at the core * always using smallest bandwidth percentage * assigned to threads, aka "max throttling" * @THREAD_THROTTLE_PER_THREAD: Memory bandwidth is throttled at the thread */ enum membw_throttle_mode { … }; /** * struct resctrl_membw - Memory bandwidth allocation related data * @min_bw: Minimum memory bandwidth percentage user can request * @bw_gran: Granularity at which the memory bandwidth is allocated * @delay_linear: True if memory B/W delay is in linear scale * @arch_needs_linear: True if we can't configure non-linear resources * @throttle_mode: Bandwidth throttling mode when threads request * different memory bandwidths * @mba_sc: True if MBA software controller(mba_sc) is enabled * @mb_map: Mapping of memory B/W percentage to memory B/W delay */ struct resctrl_membw { … }; struct rdt_parse_data; struct resctrl_schema; enum resctrl_scope { … }; /** * struct rdt_resource - attributes of a resctrl resource * @rid: The index of the resource * @alloc_capable: Is allocation available on this machine * @mon_capable: Is monitor feature available on this machine * @num_rmid: Number of RMIDs available * @ctrl_scope: Scope of this resource for control functions * @mon_scope: Scope of this resource for monitor functions * @cache: Cache allocation related data * @membw: If the component has bandwidth controls, their properties. * @ctrl_domains: RCU list of all control domains for this resource * @mon_domains: RCU list of all monitor domains for this resource * @name: Name to use in "schemata" file. * @data_width: Character width of data when displaying * @default_ctrl: Specifies default cache cbm or memory B/W percent. * @format_str: Per resource format string to show domain value * @parse_ctrlval: Per resource function pointer to parse control values * @evt_list: List of monitoring events * @fflags: flags to choose base and info files * @cdp_capable: Is the CDP feature available on this resource */ struct rdt_resource { … }; /** * struct resctrl_schema - configuration abilities of a resource presented to * user-space * @list: Member of resctrl_schema_all. * @name: The name to use in the "schemata" file. * @conf_type: Whether this schema is specific to code/data. * @res: The resource structure exported by the architecture to describe * the hardware that is configured by this schema. * @num_closid: The number of closid that can be used with this schema. When * features like CDP are enabled, this will be lower than the * hardware supports for the resource. */ struct resctrl_schema { … }; /* The number of closid supported by this resource regardless of CDP */ u32 resctrl_arch_get_num_closid(struct rdt_resource *r); int resctrl_arch_update_domains(struct rdt_resource *r, u32 closid); /* * Update the ctrl_val and apply this config right now. * Must be called on one of the domain's CPUs. */ int resctrl_arch_update_one(struct rdt_resource *r, struct rdt_ctrl_domain *d, u32 closid, enum resctrl_conf_type t, u32 cfg_val); u32 resctrl_arch_get_config(struct rdt_resource *r, struct rdt_ctrl_domain *d, u32 closid, enum resctrl_conf_type type); int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d); int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d); void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d); void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d); void resctrl_online_cpu(unsigned int cpu); void resctrl_offline_cpu(unsigned int cpu); /** * resctrl_arch_rmid_read() - Read the eventid counter corresponding to rmid * for this resource and domain. * @r: resource that the counter should be read from. * @d: domain that the counter should be read from. * @closid: closid that matches the rmid. Depending on the architecture, the * counter may match traffic of both @closid and @rmid, or @rmid * only. * @rmid: rmid of the counter to read. * @eventid: eventid to read, e.g. L3 occupancy. * @val: result of the counter read in bytes. * @arch_mon_ctx: An architecture specific value from * resctrl_arch_mon_ctx_alloc(), for MPAM this identifies * the hardware monitor allocated for this read request. * * Some architectures need to sleep when first programming some of the counters. * (specifically: arm64's MPAM cache occupancy counters can return 'not ready' * for a short period of time). Call from a non-migrateable process context on * a CPU that belongs to domain @d. e.g. use smp_call_on_cpu() or * schedule_work_on(). This function can be called with interrupts masked, * e.g. using smp_call_function_any(), but may consistently return an error. * * Return: * 0 on success, or -EIO, -EINVAL etc on error. */ int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id eventid, u64 *val, void *arch_mon_ctx); /** * resctrl_arch_rmid_read_context_check() - warn about invalid contexts * * When built with CONFIG_DEBUG_ATOMIC_SLEEP generate a warning when * resctrl_arch_rmid_read() is called with preemption disabled. * * The contract with resctrl_arch_rmid_read() is that if interrupts * are unmasked, it can sleep. This allows NOHZ_FULL systems to use an * IPI, (and fail if the call needed to sleep), while most of the time * the work is scheduled, allowing the call to sleep. */ static inline void resctrl_arch_rmid_read_context_check(void) { … } /** * resctrl_arch_reset_rmid() - Reset any private state associated with rmid * and eventid. * @r: The domain's resource. * @d: The rmid's domain. * @closid: closid that matches the rmid. Depending on the architecture, the * counter may match traffic of both @closid and @rmid, or @rmid only. * @rmid: The rmid whose counter values should be reset. * @eventid: The eventid whose counter values should be reset. * * This can be called from any CPU. */ void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id eventid); /** * resctrl_arch_reset_rmid_all() - Reset all private state associated with * all rmids and eventids. * @r: The resctrl resource. * @d: The domain for which all architectural counter state will * be cleared. * * This can be called from any CPU. */ void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d); extern unsigned int resctrl_rmid_realloc_threshold; extern unsigned int resctrl_rmid_realloc_limit; #endif /* _RESCTRL_H */