linux/arch/x86/include/asm/uv/uv_hub.h

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
 */

#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H

#ifdef CONFIG_X86_64
#include <linux/numa.h>
#include <linux/percpu.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <linux/topology.h>
#include <asm/types.h>
#include <asm/percpu.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/bios.h>
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>


/*
 * Addressing Terminology
 *
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
 *
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
 *
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
 *
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
 *
 * APICID format
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
 *
 *		1111110000000000
 *		5432109876543210
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
 *		sssssssssss
 *
 *			p  = pnode bits
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
 *			s  = bits that are in the SOCKET_ID CSR
 *
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
 */

/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 */
#define UV_MAX_NUMALINK_BLADES

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE

/* GAM (globally addressed memory) range table */
struct uv_gam_range_s {};

/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in a common per hub struct.
 * After setup, the struct is read only, so it should be readily
 * available in the L3 cache on the cpu socket for the node.
 */
struct uv_hub_info_s {};

/* CPU specific info with a pointer to the hub common info struct */
struct uv_cpu_info_s {};
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);

#define uv_cpu_info
#define uv_cpu_info_per(cpu)

/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{}

static inline struct uv_hub_info_s *_uv_hub_info(void)
{}
#define uv_hub_info

static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
{}

static inline int uv_hub_type(void)
{}

static inline __init void uv_hub_type_set(int uvmask)
{}


/*
 * HUB revision ranges for each UV HUB architecture.
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV2_HUB_REVISION_BASE
#define UV3_HUB_REVISION_BASE
#define UV4_HUB_REVISION_BASE
#define UV4A_HUB_REVISION_BASE
#define UV5_HUB_REVISION_BASE

static inline int is_uv(int uvmask) {}
static inline int is_uv1_hub(void) {}
static inline int is_uv2_hub(void) {}
static inline int is_uv3_hub(void) {}
static inline int is_uv4a_hub(void) {}
static inline int is_uv4_hub(void) {}
static inline int is_uv5_hub(void) {}

/*
 * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
 * returns true.  So to get true results, first test if is UV4A,
 * then test if is UV4.
 */

/* UVX class: UV2,3,4 */
static inline int is_uvx_hub(void) {}

/* UVY class: UV5,..? */
static inline int is_uvy_hub(void) {}

/* Any UV Hubbed System */
static inline int is_uv_hub(void) {}

uvh_apicid;

/*
 * Local & Global MMR space macros.
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
 */
#define UV_NASID_TO_PNODE(n)
#define UV_PNODE_TO_GNODE(p)
#define UV_PNODE_TO_NASID(p)

#define UV2_LOCAL_MMR_BASE
#define UV2_GLOBAL_MMR32_BASE
#define UV2_LOCAL_MMR_SIZE
#define UV2_GLOBAL_MMR32_SIZE

#define UV3_LOCAL_MMR_BASE
#define UV3_GLOBAL_MMR32_BASE
#define UV3_LOCAL_MMR_SIZE
#define UV3_GLOBAL_MMR32_SIZE

#define UV4_LOCAL_MMR_BASE
#define UV4_GLOBAL_MMR32_BASE
#define UV4_LOCAL_MMR_SIZE
#define UV4_GLOBAL_MMR32_SIZE

#define UV5_LOCAL_MMR_BASE
#define UV5_GLOBAL_MMR32_BASE
#define UV5_LOCAL_MMR_SIZE
#define UV5_GLOBAL_MMR32_SIZE

#define UV_LOCAL_MMR_BASE

#define UV_GLOBAL_MMR32_BASE

#define UV_LOCAL_MMR_SIZE

#define UV_GLOBAL_MMR32_SIZE

#define UV_GLOBAL_MMR64_BASE

#define UV_GLOBAL_GRU_MMR_BASE

#define UV_GLOBAL_MMR32_PNODE_SHIFT
#define _UV_GLOBAL_MMR64_PNODE_SHIFT
#define UV_GLOBAL_MMR64_PNODE_SHIFT

#define UV_GLOBAL_MMR32_PNODE_BITS(p)

#define UV_GLOBAL_MMR64_PNODE_BITS(p)

#define UVH_APICID
#define UV_APIC_PNODE_SHIFT

/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE
#define LOCAL_BUS_SIZE

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT
#define SCIR_LOCAL_MMR_BASE

#define SCIR_CPU_HEARTBEAT
#define SCIR_CPU_ACTIVITY
#define SCIR_CPU_HB_INTERVAL

/* Loop through all installed blades */
#define for_each_possible_blade(bid)

/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
 */

/* global bits offset - number of local address bits in gpa for this UV arch */
static inline unsigned int uv_gpa_shift(void)
{}
#define _uv_gpa_shift

/* Find node that has the address range that contains global address  */
static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
{}

/* Return base address of node that contains global address  */
static inline unsigned long uv_gam_range_base(unsigned long pa)
{}

/* socket phys RAM --> UV global NASID (UV4+) */
static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
{}
#define _uv_soc_phys_ram_to_nasid

/* socket virtual --> UV global NASID (UV4+) */
static inline unsigned long uv_gpa_nasid(void *v)
{}

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{}

/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{}

/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{}

/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{}

/* gpa -> gnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{}

/* gpa -> node offset */
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{}

/* Convert socket to node */
static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
{}

static inline int uv_socket_to_node(int socket)
{}

static inline int uv_pnode_to_socket(int pnode)
{}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{}

/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
static inline int uv_apicid_to_pnode(int apicid)
{}

/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
{}

static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
{}

static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
{}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
{}

static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
{}

static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
{}

static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{}

/*
 * Access hub local MMRs. Faster than using global space but only local MMRs
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{}

static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{}

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{}

/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{}

/* Blade number to Node number (UV2..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{}

/* Blade number of current cpu. Numbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{}

/*
 * Convert linux node number to the UV blade number.
 * .. Currently for UV2 thru UV4 the node and the blade are identical.
 * .. UV5 needs conversion when sub-numa clustering is enabled.
 */
static inline int uv_node_to_blade_id(int nid)
{}

/* Convert a CPU number to the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{}

/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{}

/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{}

/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{}

/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{}

/* Maximum possible number of blades */
extern short uv_possible_blades;
static inline int uv_num_possible_blades(void)
{}

/* Per Hub NMI support */
extern void uv_nmi_setup(void);
extern void uv_nmi_setup_hubless(void);

/* BIOS/Kernel flags exchange MMR */
#define UVH_BIOS_KERNEL_MMR
#define UVH_BIOS_KERNEL_MMR_ALIAS
#define UVH_BIOS_KERNEL_MMR_ALIAS_2

/* TSC sync valid, set by BIOS */
#define UVH_TSC_SYNC_MMR
#define UVH_TSC_SYNC_SHIFT
#define UVH_TSC_SYNC_SHIFT_UV2K
#define UVH_TSC_SYNC_MASK
#define UVH_TSC_SYNC_VALID
#define UVH_TSC_SYNC_UNKNOWN

/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR
#define UVH_NMI_MMR_CLEAR
#define UVH_NMI_MMR_SHIFT
#define UVH_NMI_MMR_TYPE

struct uv_hub_nmi_s {};

struct uv_cpu_nmi_s {};

DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);

#define uv_hub_nmi
#define uv_cpu_nmi_per(cpu)
#define uv_hub_nmi_per(cpu)

/* uv_cpu_nmi_states */
#define UV_NMI_STATE_OUT
#define UV_NMI_STATE_IN
#define UV_NMI_STATE_DUMP
#define UV_NMI_STATE_DUMP_DONE

/*
 * Get the minimum revision number of the hub chips within the partition.
 * (See UVx_HUB_REVISION_BASE above for specific values.)
 */
static inline int uv_get_min_hub_revision_id(void)
{}

#endif /* CONFIG_X86_64 */
#endif /* _ASM_X86_UV_UV_HUB_H */