linux/arch/x86/mm/ioremap.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Re-map IO memory to kernel address space so that we can access it.
 * This is needed for high PCI addresses that aren't mapped in the
 * 640k-1MB IO memory area on PC's
 *
 * (C) Copyright 1995 1996 Linus Torvalds
 */

#include <linux/memblock.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mmiotrace.h>
#include <linux/cc_platform.h>
#include <linux/efi.h>
#include <linux/pgtable.h>
#include <linux/kmsan.h>

#include <asm/set_memory.h>
#include <asm/e820/api.h>
#include <asm/efi.h>
#include <asm/fixmap.h>
#include <asm/tlbflush.h>
#include <asm/pgalloc.h>
#include <asm/memtype.h>
#include <asm/setup.h>

#include "physaddr.h"

/*
 * Descriptor controlling ioremap() behavior.
 */
struct ioremap_desc {};

/*
 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 * conflicts.
 */
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
			enum page_cache_mode pcm)
{}

/* Does the range (or a subset of) contain normal RAM? */
static unsigned int __ioremap_check_ram(struct resource *res)
{}

/*
 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 * there the whole memory is already encrypted.
 */
static unsigned int __ioremap_check_encrypted(struct resource *res)
{}

/*
 * The EFI runtime services data area is not covered by walk_mem_res(), but must
 * be mapped encrypted when SEV is active.
 */
static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
{}

static int __ioremap_collect_map_flags(struct resource *res, void *arg)
{}

/*
 * To avoid multiple resource walks, this function walks resources marked as
 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
 *
 * After that, deal with misc other ranges in __ioremap_check_other() which do
 * not fall into the above category.
 */
static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
				struct ioremap_desc *desc)
{}

/*
 * Remap an arbitrary physical address space into the kernel virtual
 * address space. It transparently creates kernel huge I/O mapping when
 * the physical address is aligned by a huge page size (1GB or 2MB) and
 * the requested size is at least the huge page size.
 *
 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
 * Therefore, the mapping code falls back to use a smaller page toward 4KB
 * when a mapping range is covered by non-WB type of MTRRs.
 *
 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 * have to convert them into an offset in a page-aligned mapping, but the
 * caller shouldn't need to know that small detail.
 */
static void __iomem *
__ioremap_caller(resource_size_t phys_addr, unsigned long size,
		 enum page_cache_mode pcm, void *caller, bool encrypted)
{}

/**
 * ioremap     -   map bus memory into CPU space
 * @phys_addr:    bus address of the memory
 * @size:      size of the resource to map
 *
 * ioremap performs a platform specific sequence of operations to
 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 * writew/writel functions and the other mmio helpers. The returned
 * address is not guaranteed to be usable directly as a virtual
 * address.
 *
 * This version of ioremap ensures that the memory is marked uncachable
 * on the CPU as well as honouring existing caching rules from things like
 * the PCI bus. Note that there are other caches and buffers on many
 * busses. In particular driver authors should read up on PCI writes
 *
 * It's useful if some control registers are in such an area and
 * write combining or read caching is not desirable:
 *
 * Must be freed with iounmap.
 */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL();

/**
 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
 * @phys_addr:    bus address of the memory
 * @size:      size of the resource to map
 *
 * ioremap_uc performs a platform specific sequence of operations to
 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 * writew/writel functions and the other mmio helpers. The returned
 * address is not guaranteed to be usable directly as a virtual
 * address.
 *
 * This version of ioremap ensures that the memory is marked with a strong
 * preference as completely uncachable on the CPU when possible. For non-PAT
 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
 * systems this will set the PAT entry for the pages as strong UC.  This call
 * will honor existing caching rules from things like the PCI bus. Note that
 * there are other caches and buffers on many busses. In particular driver
 * authors should read up on PCI writes.
 *
 * It's useful if some control registers are in such an area and
 * write combining or read caching is not desirable:
 *
 * Must be freed with iounmap.
 */
void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL_GPL();

/**
 * ioremap_wc	-	map memory into CPU space write combined
 * @phys_addr:	bus address of the memory
 * @size:	size of the resource to map
 *
 * This version of ioremap ensures that the memory is marked write combining.
 * Write combining allows faster writes to some hardware devices.
 *
 * Must be freed with iounmap.
 */
void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL();

/**
 * ioremap_wt	-	map memory into CPU space write through
 * @phys_addr:	bus address of the memory
 * @size:	size of the resource to map
 *
 * This version of ioremap ensures that the memory is marked write through.
 * Write through stores data into memory while keeping the cache up-to-date.
 *
 * Must be freed with iounmap.
 */
void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL();

void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL();

void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
{}
EXPORT_SYMBOL();

void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
				unsigned long prot_val)
{}
EXPORT_SYMBOL();

/**
 * iounmap - Free a IO remapping
 * @addr: virtual address from ioremap_*
 *
 * Caller must ensure there is only one unmapping for the same pointer.
 */
void iounmap(volatile void __iomem *addr)
{}
EXPORT_SYMBOL();

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
void *xlate_dev_mem_ptr(phys_addr_t phys)
{}

void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
{}

#ifdef CONFIG_AMD_MEM_ENCRYPT
/*
 * Examine the physical address to determine if it is an area of memory
 * that should be mapped decrypted.  If the memory is not part of the
 * kernel usable area it was accessed and created decrypted, so these
 * areas should be mapped decrypted. And since the encryption key can
 * change across reboots, persistent memory should also be mapped
 * decrypted.
 *
 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
 * only persistent memory should be mapped decrypted.
 */
static bool memremap_should_map_decrypted(resource_size_t phys_addr,
					  unsigned long size)
{}

/*
 * Examine the physical address to determine if it is EFI data. Check
 * it against the boot params structure and EFI tables and memory types.
 */
static bool memremap_is_efi_data(resource_size_t phys_addr,
				 unsigned long size)
{}

/*
 * Examine the physical address to determine if it is boot data by checking
 * it against the boot params setup_data chain.
 */
static bool memremap_is_setup_data(resource_size_t phys_addr,
				   unsigned long size)
{}

/*
 * Examine the physical address to determine if it is boot data by checking
 * it against the boot params setup_data chain (early boot version).
 */
static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
						unsigned long size)
{}

/*
 * Architecture function to determine if RAM remap is allowed. By default, a
 * RAM remap will map the data as encrypted. Determine if a RAM remap should
 * not be done so that the data will be mapped decrypted.
 */
bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
				 unsigned long flags)
{}

/*
 * Architecture override of __weak function to adjust the protection attributes
 * used when remapping memory. By default, early_memremap() will map the data
 * as encrypted. Determine if an encrypted mapping should not be done and set
 * the appropriate protection attributes.
 */
pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
					     unsigned long size,
					     pgprot_t prot)
{}

bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
{}

/* Remap memory with encryption */
void __init *early_memremap_encrypted(resource_size_t phys_addr,
				      unsigned long size)
{}

/*
 * Remap memory with encryption and write-protected - cannot be called
 * before pat_init() is called
 */
void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
					 unsigned long size)
{}

/* Remap memory without encryption */
void __init *early_memremap_decrypted(resource_size_t phys_addr,
				      unsigned long size)
{}

/*
 * Remap memory without encryption and write-protected - cannot be called
 * before pat_init() is called
 */
void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
					 unsigned long size)
{}
#endif	/* CONFIG_AMD_MEM_ENCRYPT */

static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;

static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
{}

static inline pte_t * __init early_ioremap_pte(unsigned long addr)
{}

bool __init is_early_ioremap_ptep(pte_t *ptep)
{}

void __init early_ioremap_init(void)
{}

void __init __early_set_fixmap(enum fixed_addresses idx,
			       phys_addr_t phys, pgprot_t flags)
{}