// SPDX-License-Identifier: GPL-2.0-only /* * kernel/sched/cpupri.c * * CPU priority management * * Copyright (C) 2007-2008 Novell * * Author: Gregory Haskins <[email protected]> * * This code tracks the priority of each CPU so that global migration * decisions are easy to calculate. Each CPU can be in a state as follows: * * (INVALID), NORMAL, RT1, ... RT99, HIGHER * * going from the lowest priority to the highest. CPUs in the INVALID state * are not eligible for routing. The system maintains this state with * a 2 dimensional bitmap (the first for priority class, the second for CPUs * in that class). Therefore a typical application without affinity * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit * searches). For tasks with affinity restrictions, the algorithm has a * worst case complexity of O(min(101, nr_domcpus)), though the scenario that * yields the worst case search is fairly contrived. */ /* * p->rt_priority p->prio newpri cpupri * * -1 -1 (CPUPRI_INVALID) * * 99 0 (CPUPRI_NORMAL) * * 1 98 98 1 * ... * 49 50 50 49 * 50 49 49 50 * ... * 99 0 0 99 * * 100 100 (CPUPRI_HIGHER) */ static int convert_prio(int prio) { … } static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask, int idx) { … } int cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask) { … } /** * cpupri_find_fitness - find the best (lowest-pri) CPU in the system * @cp: The cpupri context * @p: The task * @lowest_mask: A mask to fill in with selected CPUs (or NULL) * @fitness_fn: A pointer to a function to do custom checks whether the CPU * fits a specific criteria so that we only return those CPUs. * * Note: This function returns the recommended CPUs as calculated during the * current invocation. By the time the call returns, the CPUs may have in * fact changed priorities any number of times. While not ideal, it is not * an issue of correctness since the normal rebalancer logic will correct * any discrepancies created by racing against the uncertainty of the current * priority configuration. * * Return: (int)bool - CPUs were found */ int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask, bool (*fitness_fn)(struct task_struct *p, int cpu)) { … } /** * cpupri_set - update the CPU priority setting * @cp: The cpupri context * @cpu: The target CPU * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU * * Note: Assumes cpu_rq(cpu)->lock is locked * * Returns: (void) */ void cpupri_set(struct cpupri *cp, int cpu, int newpri) { … } /** * cpupri_init - initialize the cpupri structure * @cp: The cpupri context * * Return: -ENOMEM on memory allocation failure. */ int cpupri_init(struct cpupri *cp) { … } /** * cpupri_cleanup - clean up the cpupri structure * @cp: The cpupri context */ void cpupri_cleanup(struct cpupri *cp) { … }