// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006 Thomas Gleixner * * This file contains driver APIs to the irq subsystem. */ #define pr_fmt(fmt) … #include <linux/irq.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/random.h> #include <linux/interrupt.h> #include <linux/irqdomain.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/rt.h> #include <linux/sched/task.h> #include <linux/sched/isolation.h> #include <uapi/linux/sched/types.h> #include <linux/task_work.h> #include "internals.h" #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); static int __init setup_forced_irqthreads(char *arg) { … } early_param(…); #endif static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) { … } /** * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) * @irq: interrupt number to wait for * * This function waits for any pending hard IRQ handlers for this * interrupt to complete before returning. If you use this * function while holding a resource the IRQ handler may need you * will deadlock. It does not take associated threaded handlers * into account. * * Do not use this for shutdown scenarios where you must be sure * that all parts (hardirq and threaded handler) have completed. * * Returns: false if a threaded handler is active. * * This function may be called - with care - from IRQ context. * * It does not check whether there is an interrupt in flight at the * hardware level, but not serviced yet, as this might deadlock when * called with interrupts disabled and the target CPU of the interrupt * is the current CPU. */ bool synchronize_hardirq(unsigned int irq) { … } EXPORT_SYMBOL(…); static void __synchronize_irq(struct irq_desc *desc) { … } /** * synchronize_irq - wait for pending IRQ handlers (on other CPUs) * @irq: interrupt number to wait for * * This function waits for any pending IRQ handlers for this interrupt * to complete before returning. If you use this function while * holding a resource the IRQ handler may need you will deadlock. * * Can only be called from preemptible code as it might sleep when * an interrupt thread is associated to @irq. * * It optionally makes sure (when the irq chip supports that method) * that the interrupt is not pending in any CPU and waiting for * service. */ void synchronize_irq(unsigned int irq) { … } EXPORT_SYMBOL(…); #ifdef CONFIG_SMP cpumask_var_t irq_default_affinity; static bool __irq_can_set_affinity(struct irq_desc *desc) { … } /** * irq_can_set_affinity - Check if the affinity of a given irq can be set * @irq: Interrupt to check * */ int irq_can_set_affinity(unsigned int irq) { … } /** * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space * @irq: Interrupt to check * * Like irq_can_set_affinity() above, but additionally checks for the * AFFINITY_MANAGED flag. */ bool irq_can_set_affinity_usr(unsigned int irq) { … } /** * irq_set_thread_affinity - Notify irq threads to adjust affinity * @desc: irq descriptor which has affinity changed * * We just set IRQTF_AFFINITY and delegate the affinity setting * to the interrupt thread itself. We can not call * set_cpus_allowed_ptr() here as we hold desc->lock and this * code can be called from hard interrupt context. */ void irq_set_thread_affinity(struct irq_desc *desc) { … } #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK static void irq_validate_effective_affinity(struct irq_data *data) { … } #else static inline void irq_validate_effective_affinity(struct irq_data *data) { } #endif int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { … } #ifdef CONFIG_GENERIC_PENDING_IRQ static inline int irq_set_affinity_pending(struct irq_data *data, const struct cpumask *dest) { … } #else static inline int irq_set_affinity_pending(struct irq_data *data, const struct cpumask *dest) { return -EBUSY; } #endif static int irq_try_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { … } static bool irq_set_affinity_deactivated(struct irq_data *data, const struct cpumask *mask) { … } int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, bool force) { … } /** * irq_update_affinity_desc - Update affinity management for an interrupt * @irq: The interrupt number to update * @affinity: Pointer to the affinity descriptor * * This interface can be used to configure the affinity management of * interrupts which have been allocated already. * * There are certain limitations on when it may be used - attempts to use it * for when the kernel is configured for generic IRQ reservation mode (in * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with * managed/non-managed interrupt accounting. In addition, attempts to use it on * an interrupt which is already started or which has already been configured * as managed will also fail, as these mean invalid init state or double init. */ int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity) { … } static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) { … } /** * irq_set_affinity - Set the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Fails if cpumask does not contain an online CPU */ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) { … } EXPORT_SYMBOL_GPL(…); /** * irq_force_affinity - Force the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Same as irq_set_affinity, but without checking the mask against * online cpus. * * Solely for low level cpu hotplug code, where we need to make per * cpu interrupts affine before the cpu becomes online. */ int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) { … } EXPORT_SYMBOL_GPL(…); int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity) { … } EXPORT_SYMBOL_GPL(…); static void irq_affinity_notify(struct work_struct *work) { … } /** * irq_set_affinity_notifier - control notification of IRQ affinity changes * @irq: Interrupt for which to enable/disable notification * @notify: Context for notification, or %NULL to disable * notification. Function pointers must be initialised; * the other fields will be initialised by this function. * * Must be called in process context. Notification may only be enabled * after the IRQ is allocated and must be disabled before the IRQ is * freed using free_irq(). */ int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) { … } EXPORT_SYMBOL_GPL(…); #ifndef CONFIG_AUTO_IRQ_AFFINITY /* * Generic version of the affinity autoselector. */ int irq_setup_affinity(struct irq_desc *desc) { … } #else /* Wrapper for ALPHA specific affinity selector magic */ int irq_setup_affinity(struct irq_desc *desc) { return irq_select_affinity(irq_desc_get_irq(desc)); } #endif /* CONFIG_AUTO_IRQ_AFFINITY */ #endif /* CONFIG_SMP */ /** * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt * @irq: interrupt number to set affinity * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU * specific data for percpu_devid interrupts * * This function uses the vCPU specific data to set the vCPU * affinity for an irq. The vCPU specific data is passed from * outside, such as KVM. One example code path is as below: * KVM -> IOMMU -> irq_set_vcpu_affinity(). */ int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) { … } EXPORT_SYMBOL_GPL(…); void __disable_irq(struct irq_desc *desc) { … } static int __disable_irq_nosync(unsigned int irq) { … } /** * disable_irq_nosync - disable an irq without waiting * @irq: Interrupt to disable * * Disable the selected interrupt line. Disables and Enables are * nested. * Unlike disable_irq(), this function does not ensure existing * instances of the IRQ handler have completed before returning. * * This function may be called from IRQ context. */ void disable_irq_nosync(unsigned int irq) { … } EXPORT_SYMBOL(…); /** * disable_irq - disable an irq and wait for completion * @irq: Interrupt to disable * * Disable the selected interrupt line. Enables and Disables are * nested. * This function waits for any pending IRQ handlers for this interrupt * to complete before returning. If you use this function while * holding a resource the IRQ handler may need you will deadlock. * * Can only be called from preemptible code as it might sleep when * an interrupt thread is associated to @irq. * */ void disable_irq(unsigned int irq) { … } EXPORT_SYMBOL(…); /** * disable_hardirq - disables an irq and waits for hardirq completion * @irq: Interrupt to disable * * Disable the selected interrupt line. Enables and Disables are * nested. * This function waits for any pending hard IRQ handlers for this * interrupt to complete before returning. If you use this function while * holding a resource the hard IRQ handler may need you will deadlock. * * When used to optimistically disable an interrupt from atomic context * the return value must be checked. * * Returns: false if a threaded handler is active. * * This function may be called - with care - from IRQ context. */ bool disable_hardirq(unsigned int irq) { … } EXPORT_SYMBOL_GPL(…); /** * disable_nmi_nosync - disable an nmi without waiting * @irq: Interrupt to disable * * Disable the selected interrupt line. Disables and enables are * nested. * The interrupt to disable must have been requested through request_nmi. * Unlike disable_nmi(), this function does not ensure existing * instances of the IRQ handler have completed before returning. */ void disable_nmi_nosync(unsigned int irq) { … } void __enable_irq(struct irq_desc *desc) { … } /** * enable_irq - enable handling of an irq * @irq: Interrupt to enable * * Undoes the effect of one call to disable_irq(). If this * matches the last disable, processing of interrupts on this * IRQ line is re-enabled. * * This function may be called from IRQ context only when * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! */ void enable_irq(unsigned int irq) { … } EXPORT_SYMBOL(…); /** * enable_nmi - enable handling of an nmi * @irq: Interrupt to enable * * The interrupt to enable must have been requested through request_nmi. * Undoes the effect of one call to disable_nmi(). If this * matches the last disable, processing of interrupts on this * IRQ line is re-enabled. */ void enable_nmi(unsigned int irq) { … } static int set_irq_wake_real(unsigned int irq, unsigned int on) { … } /** * irq_set_irq_wake - control irq power management wakeup * @irq: interrupt to control * @on: enable/disable power management wakeup * * Enable/disable power management wakeup mode, which is * disabled by default. Enables and disables must match, * just as they match for non-wakeup mode support. * * Wakeup mode lets this IRQ wake the system from sleep * states like "suspend to RAM". * * Note: irq enable/disable state is completely orthogonal * to the enable/disable state of irq wake. An irq can be * disabled with disable_irq() and still wake the system as * long as the irq has wake enabled. If this does not hold, * then the underlying irq chip and the related driver need * to be investigated. */ int irq_set_irq_wake(unsigned int irq, unsigned int on) { … } EXPORT_SYMBOL(…); /* * Internal function that tells the architecture code whether a * particular irq has been exclusively allocated or is available * for driver use. */ int can_request_irq(unsigned int irq, unsigned long irqflags) { … } int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) { … } #ifdef CONFIG_HARDIRQS_SW_RESEND int irq_set_parent(int irq, int parent_irq) { … } EXPORT_SYMBOL_GPL(…); #endif /* * Default primary interrupt handler for threaded interrupts. Is * assigned as primary handler when request_threaded_irq is called * with handler == NULL. Useful for oneshot interrupts. */ static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) { … } /* * Primary handler for nested threaded interrupts. Should never be * called. */ static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) { … } static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) { … } #ifdef CONFIG_SMP /* * Check whether we need to change the affinity of the interrupt thread. */ static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { … } #else static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } #endif static int irq_wait_for_interrupt(struct irq_desc *desc, struct irqaction *action) { … } /* * Oneshot interrupts keep the irq line masked until the threaded * handler finished. unmask if the interrupt has not been disabled and * is marked MASKED. */ static void irq_finalize_oneshot(struct irq_desc *desc, struct irqaction *action) { … } /* * Interrupts which are not explicitly requested as threaded * interrupts rely on the implicit bh/preempt disable of the hard irq * context. So we need to disable bh here to avoid deadlocks and other * side effects. */ static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) { … } /* * Interrupts explicitly requested as threaded interrupts want to be * preemptible - many of them need to sleep and wait for slow busses to * complete. */ static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action) { … } void wake_threads_waitq(struct irq_desc *desc) { … } static void irq_thread_dtor(struct callback_head *unused) { … } static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) { … } /* * Internal function to notify that a interrupt thread is ready. */ static void irq_thread_set_ready(struct irq_desc *desc, struct irqaction *action) { … } /* * Internal function to wake up a interrupt thread and wait until it is * ready. */ static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, struct irqaction *action) { … } /* * Interrupt handler thread */ static int irq_thread(void *data) { … } /** * irq_wake_thread - wake the irq thread for the action identified by dev_id * @irq: Interrupt line * @dev_id: Device identity for which the thread should be woken * */ void irq_wake_thread(unsigned int irq, void *dev_id) { … } EXPORT_SYMBOL_GPL(…); static int irq_setup_forced_threading(struct irqaction *new) { … } static int irq_request_resources(struct irq_desc *desc) { … } static void irq_release_resources(struct irq_desc *desc) { … } static bool irq_supports_nmi(struct irq_desc *desc) { … } static int irq_nmi_setup(struct irq_desc *desc) { … } static void irq_nmi_teardown(struct irq_desc *desc) { … } static int setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) { … } /* * Internal function to register an irqaction - typically used to * allocate special interrupts that are part of the architecture. * * Locking rules: * * desc->request_mutex Provides serialization against a concurrent free_irq() * chip_bus_lock Provides serialization for slow bus operations * desc->lock Provides serialization against hard interrupts * * chip_bus_lock and desc->lock are sufficient for all other management and * interrupt related functions. desc->request_mutex solely serializes * request/free_irq(). */ static int __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) { … } /* * Internal function to unregister an irqaction - used to free * regular and special interrupts that are part of the architecture. */ static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) { … } /** * free_irq - free an interrupt allocated with request_irq * @irq: Interrupt line to free * @dev_id: Device identity to free * * Remove an interrupt handler. The handler is removed and if the * interrupt line is no longer in use by any driver it is disabled. * On a shared IRQ the caller must ensure the interrupt is disabled * on the card it drives before calling this function. The function * does not return until any executing interrupts for this IRQ * have completed. * * This function must not be called from interrupt context. * * Returns the devname argument passed to request_irq. */ const void *free_irq(unsigned int irq, void *dev_id) { … } EXPORT_SYMBOL(…); /* This function must be called with desc->lock held */ static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) { … } const void *free_nmi(unsigned int irq, void *dev_id) { … } /** * request_threaded_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * Primary handler for threaded interrupts. * If handler is NULL and thread_fn != NULL * the default primary handler is installed. * @thread_fn: Function called from the irq handler thread * If NULL, no irq thread is created * @irqflags: Interrupt type flags * @devname: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. From the point this * call is made your handler function may be invoked. Since * your handler function must clear any interrupt the board * raises, you must take care both to initialise your hardware * and to set up the interrupt handler in the right order. * * If you want to set up a threaded irq handler for your device * then you need to supply @handler and @thread_fn. @handler is * still called in hard interrupt context and has to check * whether the interrupt originates from the device. If yes it * needs to disable the interrupt on the device and return * IRQ_WAKE_THREAD which will wake up the handler thread and run * @thread_fn. This split handler design is necessary to support * shared interrupts. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If your interrupt is shared you must pass a non NULL dev_id * as this is required when freeing the interrupt. * * Flags: * * IRQF_SHARED Interrupt is shared * IRQF_TRIGGER_* Specify active edge(s) or level * IRQF_ONESHOT Run thread_fn with interrupt line masked */ int request_threaded_irq(unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, unsigned long irqflags, const char *devname, void *dev_id) { … } EXPORT_SYMBOL(…); /** * request_any_context_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * Threaded handler for threaded interrupts. * @flags: Interrupt type flags * @name: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. It selects either a * hardirq or threaded handling method depending on the * context. * * On failure, it returns a negative value. On success, * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. */ int request_any_context_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev_id) { … } EXPORT_SYMBOL_GPL(…); /** * request_nmi - allocate an interrupt line for NMI delivery * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * Threaded handler for threaded interrupts. * @irqflags: Interrupt type flags * @name: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. It sets up the IRQ line * to be handled as an NMI. * * An interrupt line delivering NMIs cannot be shared and IRQ handling * cannot be threaded. * * Interrupt lines requested for NMI delivering must produce per cpu * interrupts and have auto enabling setting disabled. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If the interrupt line cannot be used to deliver NMIs, function * will fail and return a negative value. */ int request_nmi(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *name, void *dev_id) { … } void enable_percpu_irq(unsigned int irq, unsigned int type) { … } EXPORT_SYMBOL_GPL(…); void enable_percpu_nmi(unsigned int irq, unsigned int type) { … } /** * irq_percpu_is_enabled - Check whether the per cpu irq is enabled * @irq: Linux irq number to check for * * Must be called from a non migratable context. Returns the enable * state of a per cpu interrupt on the current cpu. */ bool irq_percpu_is_enabled(unsigned int irq) { … } EXPORT_SYMBOL_GPL(…); void disable_percpu_irq(unsigned int irq) { … } EXPORT_SYMBOL_GPL(…); void disable_percpu_nmi(unsigned int irq) { … } /* * Internal function to unregister a percpu irqaction. */ static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) { … } /** * remove_percpu_irq - free a per-cpu interrupt * @irq: Interrupt line to free * @act: irqaction for the interrupt * * Used to remove interrupts statically setup by the early boot process. */ void remove_percpu_irq(unsigned int irq, struct irqaction *act) { … } /** * free_percpu_irq - free an interrupt allocated with request_percpu_irq * @irq: Interrupt line to free * @dev_id: Device identity to free * * Remove a percpu interrupt handler. The handler is removed, but * the interrupt line is not disabled. This must be done on each * CPU before calling this function. The function does not return * until any executing interrupts for this IRQ have completed. * * This function must not be called from interrupt context. */ void free_percpu_irq(unsigned int irq, void __percpu *dev_id) { … } EXPORT_SYMBOL_GPL(…); void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) { … } /** * setup_percpu_irq - setup a per-cpu interrupt * @irq: Interrupt line to setup * @act: irqaction for the interrupt * * Used to statically setup per-cpu interrupts in the early boot process. */ int setup_percpu_irq(unsigned int irq, struct irqaction *act) { … } /** * __request_percpu_irq - allocate a percpu interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * @flags: Interrupt type flags (IRQF_TIMER only) * @devname: An ascii name for the claiming device * @dev_id: A percpu cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt on the local CPU. If the interrupt is supposed to be * enabled on other CPUs, it has to be done on each CPU using * enable_percpu_irq(). * * Dev_id must be globally unique. It is a per-cpu variable, and * the handler gets called with the interrupted CPU's instance of * that variable. */ int __request_percpu_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *devname, void __percpu *dev_id) { … } EXPORT_SYMBOL_GPL(…); /** * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * @name: An ascii name for the claiming device * @dev_id: A percpu cookie passed back to the handler function * * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs * have to be setup on each CPU by calling prepare_percpu_nmi() before * being enabled on the same CPU by using enable_percpu_nmi(). * * Dev_id must be globally unique. It is a per-cpu variable, and * the handler gets called with the interrupted CPU's instance of * that variable. * * Interrupt lines requested for NMI delivering should have auto enabling * setting disabled. * * If the interrupt line cannot be used to deliver NMIs, function * will fail returning a negative value. */ int request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *name, void __percpu *dev_id) { … } /** * prepare_percpu_nmi - performs CPU local setup for NMI delivery * @irq: Interrupt line to prepare for NMI delivery * * This call prepares an interrupt line to deliver NMI on the current CPU, * before that interrupt line gets enabled with enable_percpu_nmi(). * * As a CPU local operation, this should be called from non-preemptible * context. * * If the interrupt line cannot be used to deliver NMIs, function * will fail returning a negative value. */ int prepare_percpu_nmi(unsigned int irq) { … } /** * teardown_percpu_nmi - undoes NMI setup of IRQ line * @irq: Interrupt line from which CPU local NMI configuration should be * removed * * This call undoes the setup done by prepare_percpu_nmi(). * * IRQ line should not be enabled for the current CPU. * * As a CPU local operation, this should be called from non-preemptible * context. */ void teardown_percpu_nmi(unsigned int irq) { … } int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) { … } /** * irq_get_irqchip_state - returns the irqchip state of a interrupt. * @irq: Interrupt line that is forwarded to a VM * @which: One of IRQCHIP_STATE_* the caller wants to know about * @state: a pointer to a boolean where the state is to be stored * * This call snapshots the internal irqchip state of an * interrupt, returning into @state the bit corresponding to * stage @which * * This function should be called with preemption disabled if the * interrupt controller has per-cpu registers. */ int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state) { … } EXPORT_SYMBOL_GPL(…); /** * irq_set_irqchip_state - set the state of a forwarded interrupt. * @irq: Interrupt line that is forwarded to a VM * @which: State to be restored (one of IRQCHIP_STATE_*) * @val: Value corresponding to @which * * This call sets the internal irqchip state of an interrupt, * depending on the value of @which. * * This function should be called with migration disabled if the * interrupt controller has per-cpu registers. */ int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val) { … } EXPORT_SYMBOL_GPL(…); /** * irq_has_action - Check whether an interrupt is requested * @irq: The linux irq number * * Returns: A snapshot of the current state */ bool irq_has_action(unsigned int irq) { … } EXPORT_SYMBOL_GPL(…); /** * irq_check_status_bit - Check whether bits in the irq descriptor status are set * @irq: The linux irq number * @bitmask: The bitmask to evaluate * * Returns: True if one of the bits in @bitmask is set */ bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) { … } EXPORT_SYMBOL_GPL(…);