linux/kernel/rcu/rcu_segcblist.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * RCU segmented callback lists, function definitions
 *
 * Copyright IBM Corporation, 2017
 *
 * Authors: Paul E. McKenney <[email protected]>
 */

#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/types.h>

#include "rcu_segcblist.h"

/* Initialize simple callback list. */
void rcu_cblist_init(struct rcu_cblist *rclp)
{}

/*
 * Enqueue an rcu_head structure onto the specified callback list.
 */
void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp)
{}

/*
 * Flush the second rcu_cblist structure onto the first one, obliterating
 * any contents of the first.  If rhp is non-NULL, enqueue it as the sole
 * element of the second rcu_cblist structure, but ensuring that the second
 * rcu_cblist structure, if initially non-empty, always appears non-empty
 * throughout the process.  If rdp is NULL, the second rcu_cblist structure
 * is instead initialized to empty.
 */
void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp,
			      struct rcu_cblist *srclp,
			      struct rcu_head *rhp)
{}

/*
 * Dequeue the oldest rcu_head structure from the specified callback
 * list.
 */
struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
{}

/* Set the length of an rcu_segcblist structure. */
static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
{}

/* Get the length of a segment of the rcu_segcblist structure. */
long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg)
{}

/* Return number of callbacks in segmented callback list by summing seglen. */
long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp)
{}

/* Set the length of a segment of the rcu_segcblist structure. */
static void rcu_segcblist_set_seglen(struct rcu_segcblist *rsclp, int seg, long v)
{}

/* Increase the numeric length of a segment by a specified amount. */
static void rcu_segcblist_add_seglen(struct rcu_segcblist *rsclp, int seg, long v)
{}

/* Move from's segment length to to's segment. */
static void rcu_segcblist_move_seglen(struct rcu_segcblist *rsclp, int from, int to)
{}

/* Increment segment's length. */
static void rcu_segcblist_inc_seglen(struct rcu_segcblist *rsclp, int seg)
{}

/*
 * Increase the numeric length of an rcu_segcblist structure by the
 * specified amount, which can be negative.  This can cause the ->len
 * field to disagree with the actual number of callbacks on the structure.
 * This increase is fully ordered with respect to the callers accesses
 * both before and after.
 *
 * So why on earth is a memory barrier required both before and after
 * the update to the ->len field???
 *
 * The reason is that rcu_barrier() locklessly samples each CPU's ->len
 * field, and if a given CPU's field is zero, avoids IPIing that CPU.
 * This can of course race with both queuing and invoking of callbacks.
 * Failing to correctly handle either of these races could result in
 * rcu_barrier() failing to IPI a CPU that actually had callbacks queued
 * which rcu_barrier() was obligated to wait on.  And if rcu_barrier()
 * failed to wait on such a callback, unloading certain kernel modules
 * would result in calls to functions whose code was no longer present in
 * the kernel, for but one example.
 *
 * Therefore, ->len transitions from 1->0 and 0->1 have to be carefully
 * ordered with respect with both list modifications and the rcu_barrier().
 *
 * The queuing case is CASE 1 and the invoking case is CASE 2.
 *
 * CASE 1: Suppose that CPU 0 has no callbacks queued, but invokes
 * call_rcu() just as CPU 1 invokes rcu_barrier().  CPU 0's ->len field
 * will transition from 0->1, which is one of the transitions that must
 * be handled carefully.  Without the full memory barriers after the ->len
 * update and at the beginning of rcu_barrier(), the following could happen:
 *
 * CPU 0				CPU 1
 *
 * call_rcu().
 *					rcu_barrier() sees ->len as 0.
 * set ->len = 1.
 *					rcu_barrier() does nothing.
 *					module is unloaded.
 * callback invokes unloaded function!
 *
 * With the full barriers, any case where rcu_barrier() sees ->len as 0 will
 * have unambiguously preceded the return from the racing call_rcu(), which
 * means that this call_rcu() invocation is OK to not wait on.  After all,
 * you are supposed to make sure that any problematic call_rcu() invocations
 * happen before the rcu_barrier().
 *
 *
 * CASE 2: Suppose that CPU 0 is invoking its last callback just as
 * CPU 1 invokes rcu_barrier().  CPU 0's ->len field will transition from
 * 1->0, which is one of the transitions that must be handled carefully.
 * Without the full memory barriers before the ->len update and at the
 * end of rcu_barrier(), the following could happen:
 *
 * CPU 0				CPU 1
 *
 * start invoking last callback
 * set ->len = 0 (reordered)
 *					rcu_barrier() sees ->len as 0
 *					rcu_barrier() does nothing.
 *					module is unloaded
 * callback executing after unloaded!
 *
 * With the full barriers, any case where rcu_barrier() sees ->len as 0
 * will be fully ordered after the completion of the callback function,
 * so that the module unloading operation is completely safe.
 *
 */
void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
{}

/*
 * Increase the numeric length of an rcu_segcblist structure by one.
 * This can cause the ->len field to disagree with the actual number of
 * callbacks on the structure.  This increase is fully ordered with respect
 * to the callers accesses both before and after.
 */
void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp)
{}

/*
 * Initialize an rcu_segcblist structure.
 */
void rcu_segcblist_init(struct rcu_segcblist *rsclp)
{}

/*
 * Disable the specified rcu_segcblist structure, so that callbacks can
 * no longer be posted to it.  This structure must be empty.
 */
void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
{}

/*
 * Mark the specified rcu_segcblist structure as offloaded (or not)
 */
void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload)
{}

/*
 * Does the specified rcu_segcblist structure contain callbacks that
 * are ready to be invoked?
 */
bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
{}

/*
 * Does the specified rcu_segcblist structure contain callbacks that
 * are still pending, that is, not yet ready to be invoked?
 */
bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
{}

/*
 * Return a pointer to the first callback in the specified rcu_segcblist
 * structure.  This is useful for diagnostics.
 */
struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
{}

/*
 * Return a pointer to the first pending callback in the specified
 * rcu_segcblist structure.  This is useful just after posting a given
 * callback -- if that callback is the first pending callback, then
 * you cannot rely on someone else having already started up the required
 * grace period.
 */
struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
{}

/*
 * Return false if there are no CBs awaiting grace periods, otherwise,
 * return true and store the nearest waited-upon grace period into *lp.
 */
bool rcu_segcblist_nextgp(struct rcu_segcblist *rsclp, unsigned long *lp)
{}

/*
 * Enqueue the specified callback onto the specified rcu_segcblist
 * structure, updating accounting as needed.  Note that the ->len
 * field may be accessed locklessly, hence the WRITE_ONCE().
 * The ->len field is used by rcu_barrier() and friends to determine
 * if it must post a callback on this structure, and it is OK
 * for rcu_barrier() to sometimes post callbacks needlessly, but
 * absolutely not OK for it to ever miss posting a callback.
 */
void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
			   struct rcu_head *rhp)
{}

/*
 * Entrain the specified callback onto the specified rcu_segcblist at
 * the end of the last non-empty segment.  If the entire rcu_segcblist
 * is empty, make no change, but return false.
 *
 * This is intended for use by rcu_barrier()-like primitives, -not-
 * for normal grace-period use.  IMPORTANT:  The callback you enqueue
 * will wait for all prior callbacks, NOT necessarily for a grace
 * period.  You have been warned.
 */
bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
			   struct rcu_head *rhp)
{}

/*
 * Extract only those callbacks ready to be invoked from the specified
 * rcu_segcblist structure and place them in the specified rcu_cblist
 * structure.
 */
void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
				    struct rcu_cblist *rclp)
{}

/*
 * Extract only those callbacks still pending (not yet ready to be
 * invoked) from the specified rcu_segcblist structure and place them in
 * the specified rcu_cblist structure.  Note that this loses information
 * about any callbacks that might have been partway done waiting for
 * their grace period.  Too bad!  They will have to start over.
 */
void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
				    struct rcu_cblist *rclp)
{}

/*
 * Insert counts from the specified rcu_cblist structure in the
 * specified rcu_segcblist structure.
 */
void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
				struct rcu_cblist *rclp)
{}

/*
 * Move callbacks from the specified rcu_cblist to the beginning of the
 * done-callbacks segment of the specified rcu_segcblist.
 */
void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
				   struct rcu_cblist *rclp)
{}

/*
 * Move callbacks from the specified rcu_cblist to the end of the
 * new-callbacks segment of the specified rcu_segcblist.
 */
void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
				   struct rcu_cblist *rclp)
{}

/*
 * Advance the callbacks in the specified rcu_segcblist structure based
 * on the current value passed in for the grace-period counter.
 */
void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq)
{}

/*
 * "Accelerate" callbacks based on more-accurate grace-period information.
 * The reason for this is that RCU does not synchronize the beginnings and
 * ends of grace periods, and that callbacks are posted locally.  This in
 * turn means that the callbacks must be labelled conservatively early
 * on, as getting exact information would degrade both performance and
 * scalability.  When more accurate grace-period information becomes
 * available, previously posted callbacks can be "accelerated", marking
 * them to complete at the end of the earlier grace period.
 *
 * This function operates on an rcu_segcblist structure, and also the
 * grace-period sequence number seq at which new callbacks would become
 * ready to invoke.  Returns true if there are callbacks that won't be
 * ready to invoke until seq, false otherwise.
 */
bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq)
{}

/*
 * Merge the source rcu_segcblist structure into the destination
 * rcu_segcblist structure, then initialize the source.  Any pending
 * callbacks from the source get to start over.  It is best to
 * advance and accelerate both the destination and the source
 * before merging.
 */
void rcu_segcblist_merge(struct rcu_segcblist *dst_rsclp,
			 struct rcu_segcblist *src_rsclp)
{}