/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _PKEYS_HELPER_H
#define _PKEYS_HELPER_H
#define _GNU_SOURCE
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <signal.h>
#include <assert.h>
#include <stdlib.h>
#include <ucontext.h>
#include <sys/mman.h>
#include "../kselftest.h"
/* Define some kernel-like types */
#define u8 __u8
#define u16 __u16
#define u32 __u32
#define u64 __u64
#define PTR_ERR_ENOTSUP ((void *)-ENOTSUP)
#ifndef DEBUG_LEVEL
#define DEBUG_LEVEL 0
#endif
#define DPRINT_IN_SIGNAL_BUF_SIZE 4096
extern int dprint_in_signal;
extern char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
extern int test_nr;
extern int iteration_nr;
#ifdef __GNUC__
__printf(1, 2)
#endif
static inline void sigsafe_printf(const char *format, ...)
{
va_list ap;
if (!dprint_in_signal) {
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
} else {
int ret;
/*
* No printf() functions are signal-safe.
* They deadlock easily. Write the format
* string to get some output, even if
* incomplete.
*/
ret = write(1, format, strlen(format));
if (ret < 0)
exit(1);
}
}
#define dprintf_level(level, args...) do { \
if (level <= DEBUG_LEVEL) \
sigsafe_printf(args); \
} while (0)
#define dprintf0(args...) dprintf_level(0, args)
#define dprintf1(args...) dprintf_level(1, args)
#define dprintf2(args...) dprintf_level(2, args)
#define dprintf3(args...) dprintf_level(3, args)
#define dprintf4(args...) dprintf_level(4, args)
extern void abort_hooks(void);
#define pkey_assert(condition) do { \
if (!(condition)) { \
dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \
__FILE__, __LINE__, \
test_nr, iteration_nr); \
dprintf0("errno at assert: %d", errno); \
abort_hooks(); \
exit(__LINE__); \
} \
} while (0)
__attribute__((noinline)) int read_ptr(int *ptr);
void expected_pkey_fault(int pkey);
int sys_pkey_alloc(unsigned long flags, unsigned long init_val);
int sys_pkey_free(unsigned long pkey);
int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
unsigned long pkey);
void record_pkey_malloc(void *ptr, long size, int prot);
#if defined(__i386__) || defined(__x86_64__) /* arch */
#include "pkey-x86.h"
#elif defined(__powerpc64__) /* arch */
#include "pkey-powerpc.h"
#else /* arch */
#error Architecture not supported
#endif /* arch */
#define PKEY_MASK (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)
static inline u64 set_pkey_bits(u64 reg, int pkey, u64 flags)
{
u32 shift = pkey_bit_position(pkey);
/* mask out bits from pkey in old value */
reg &= ~((u64)PKEY_MASK << shift);
/* OR in new bits for pkey */
reg |= (flags & PKEY_MASK) << shift;
return reg;
}
static inline u64 get_pkey_bits(u64 reg, int pkey)
{
u32 shift = pkey_bit_position(pkey);
/*
* shift down the relevant bits to the lowest two, then
* mask off all the other higher bits
*/
return ((reg >> shift) & PKEY_MASK);
}
extern u64 shadow_pkey_reg;
static inline u64 _read_pkey_reg(int line)
{
u64 pkey_reg = __read_pkey_reg();
dprintf4("read_pkey_reg(line=%d) pkey_reg: %016llx"
" shadow: %016llx\n",
line, pkey_reg, shadow_pkey_reg);
assert(pkey_reg == shadow_pkey_reg);
return pkey_reg;
}
#define read_pkey_reg() _read_pkey_reg(__LINE__)
static inline void write_pkey_reg(u64 pkey_reg)
{
dprintf4("%s() changing %016llx to %016llx\n", __func__,
__read_pkey_reg(), pkey_reg);
/* will do the shadow check for us: */
read_pkey_reg();
__write_pkey_reg(pkey_reg);
shadow_pkey_reg = pkey_reg;
dprintf4("%s(%016llx) pkey_reg: %016llx\n", __func__,
pkey_reg, __read_pkey_reg());
}
/*
* These are technically racy. since something could
* change PKEY register between the read and the write.
*/
static inline void __pkey_access_allow(int pkey, int do_allow)
{
u64 pkey_reg = read_pkey_reg();
int bit = pkey * 2;
if (do_allow)
pkey_reg &= (1<<bit);
else
pkey_reg |= (1<<bit);
dprintf4("pkey_reg now: %016llx\n", read_pkey_reg());
write_pkey_reg(pkey_reg);
}
static inline void __pkey_write_allow(int pkey, int do_allow_write)
{
u64 pkey_reg = read_pkey_reg();
int bit = pkey * 2 + 1;
if (do_allow_write)
pkey_reg &= (1<<bit);
else
pkey_reg |= (1<<bit);
write_pkey_reg(pkey_reg);
dprintf4("pkey_reg now: %016llx\n", read_pkey_reg());
}
#define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
#define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1))
#define ALIGN_PTR_UP(p, ptr_align_to) \
((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to))
#define ALIGN_PTR_DOWN(p, ptr_align_to) \
((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to))
#define __stringify_1(x...) #x
#define __stringify(x...) __stringify_1(x)
static inline u32 *siginfo_get_pkey_ptr(siginfo_t *si)
{
#ifdef si_pkey
return &si->si_pkey;
#else
return (u32 *)(((u8 *)si) + si_pkey_offset);
#endif
}
static inline int kernel_has_pkeys(void)
{
/* try allocating a key and see if it succeeds */
int ret = sys_pkey_alloc(0, 0);
if (ret <= 0) {
return 0;
}
sys_pkey_free(ret);
return 1;
}
static inline int is_pkeys_supported(void)
{
/* check if the cpu supports pkeys */
if (!cpu_has_pkeys()) {
dprintf1("SKIP: %s: no CPU support\n", __func__);
return 0;
}
/* check if the kernel supports pkeys */
if (!kernel_has_pkeys()) {
dprintf1("SKIP: %s: no kernel support\n", __func__);
return 0;
}
return 1;
}
#endif /* _PKEYS_HELPER_H */