// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#include <argp.h>
#include <linux/log2.h>
#include <pthread.h>
#include "bench.h"
#include "bloom_filter_bench.skel.h"
#include "bpf_util.h"
static struct ctx {
bool use_array_map;
bool use_hashmap;
bool hashmap_use_bloom;
bool count_false_hits;
struct bloom_filter_bench *skel;
int bloom_fd;
int hashmap_fd;
int array_map_fd;
pthread_mutex_t map_done_mtx;
pthread_cond_t map_done_cv;
bool map_done;
bool map_prepare_err;
__u32 next_map_idx;
} ctx = {
.map_done_mtx = PTHREAD_MUTEX_INITIALIZER,
.map_done_cv = PTHREAD_COND_INITIALIZER,
};
struct stat {
__u32 stats[3];
};
static struct {
__u32 nr_entries;
__u8 nr_hash_funcs;
__u8 value_size;
} args = {
.nr_entries = 1000,
.nr_hash_funcs = 3,
.value_size = 8,
};
enum {
ARG_NR_ENTRIES = 3000,
ARG_NR_HASH_FUNCS = 3001,
ARG_VALUE_SIZE = 3002,
};
static const struct argp_option opts[] = {
{ "nr_entries", ARG_NR_ENTRIES, "NR_ENTRIES", 0,
"Set number of expected unique entries in the bloom filter"},
{ "nr_hash_funcs", ARG_NR_HASH_FUNCS, "NR_HASH_FUNCS", 0,
"Set number of hash functions in the bloom filter"},
{ "value_size", ARG_VALUE_SIZE, "VALUE_SIZE", 0,
"Set value size (in bytes) of bloom filter entries"},
{},
};
static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
long ret;
switch (key) {
case ARG_NR_ENTRIES:
ret = strtol(arg, NULL, 10);
if (ret < 1 || ret > UINT_MAX) {
fprintf(stderr, "Invalid nr_entries count.");
argp_usage(state);
}
args.nr_entries = ret;
break;
case ARG_NR_HASH_FUNCS:
ret = strtol(arg, NULL, 10);
if (ret < 1 || ret > 15) {
fprintf(stderr,
"The bloom filter must use 1 to 15 hash functions.");
argp_usage(state);
}
args.nr_hash_funcs = ret;
break;
case ARG_VALUE_SIZE:
ret = strtol(arg, NULL, 10);
if (ret < 2 || ret > 256) {
fprintf(stderr,
"Invalid value size. Must be between 2 and 256 bytes");
argp_usage(state);
}
args.value_size = ret;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
/* exported into benchmark runner */
const struct argp bench_bloom_map_argp = {
.options = opts,
.parser = parse_arg,
};
static void validate(void)
{
if (env.consumer_cnt != 0) {
fprintf(stderr,
"The bloom filter benchmarks do not support consumer\n");
exit(1);
}
}
static inline void trigger_bpf_program(void)
{
syscall(__NR_getpgid);
}
static void *producer(void *input)
{
while (true)
trigger_bpf_program();
return NULL;
}
static void *map_prepare_thread(void *arg)
{
__u32 val_size, i;
void *val = NULL;
int err;
val_size = args.value_size;
val = malloc(val_size);
if (!val) {
ctx.map_prepare_err = true;
goto done;
}
while (true) {
i = __atomic_add_fetch(&ctx.next_map_idx, 1, __ATOMIC_RELAXED);
if (i > args.nr_entries)
break;
again:
/* Populate hashmap, bloom filter map, and array map with the same
* random values
*/
err = syscall(__NR_getrandom, val, val_size, 0);
if (err != val_size) {
ctx.map_prepare_err = true;
fprintf(stderr, "failed to get random value: %d\n", -errno);
break;
}
if (ctx.use_hashmap) {
err = bpf_map_update_elem(ctx.hashmap_fd, val, val, BPF_NOEXIST);
if (err) {
if (err != -EEXIST) {
ctx.map_prepare_err = true;
fprintf(stderr, "failed to add elem to hashmap: %d\n",
-errno);
break;
}
goto again;
}
}
i--;
if (ctx.use_array_map) {
err = bpf_map_update_elem(ctx.array_map_fd, &i, val, 0);
if (err) {
ctx.map_prepare_err = true;
fprintf(stderr, "failed to add elem to array map: %d\n", -errno);
break;
}
}
if (ctx.use_hashmap && !ctx.hashmap_use_bloom)
continue;
err = bpf_map_update_elem(ctx.bloom_fd, NULL, val, 0);
if (err) {
ctx.map_prepare_err = true;
fprintf(stderr,
"failed to add elem to bloom filter map: %d\n", -errno);
break;
}
}
done:
pthread_mutex_lock(&ctx.map_done_mtx);
ctx.map_done = true;
pthread_cond_signal(&ctx.map_done_cv);
pthread_mutex_unlock(&ctx.map_done_mtx);
if (val)
free(val);
return NULL;
}
static void populate_maps(void)
{
unsigned int nr_cpus = bpf_num_possible_cpus();
pthread_t map_thread;
int i, err, nr_rand_bytes;
ctx.bloom_fd = bpf_map__fd(ctx.skel->maps.bloom_map);
ctx.hashmap_fd = bpf_map__fd(ctx.skel->maps.hashmap);
ctx.array_map_fd = bpf_map__fd(ctx.skel->maps.array_map);
for (i = 0; i < nr_cpus; i++) {
err = pthread_create(&map_thread, NULL, map_prepare_thread,
NULL);
if (err) {
fprintf(stderr, "failed to create pthread: %d\n", -errno);
exit(1);
}
}
pthread_mutex_lock(&ctx.map_done_mtx);
while (!ctx.map_done)
pthread_cond_wait(&ctx.map_done_cv, &ctx.map_done_mtx);
pthread_mutex_unlock(&ctx.map_done_mtx);
if (ctx.map_prepare_err)
exit(1);
nr_rand_bytes = syscall(__NR_getrandom, ctx.skel->bss->rand_vals,
ctx.skel->rodata->nr_rand_bytes, 0);
if (nr_rand_bytes != ctx.skel->rodata->nr_rand_bytes) {
fprintf(stderr, "failed to get random bytes\n");
exit(1);
}
}
static void check_args(void)
{
if (args.value_size < 8) {
__u64 nr_unique_entries = 1ULL << (args.value_size * 8);
if (args.nr_entries > nr_unique_entries) {
fprintf(stderr,
"Not enough unique values for the nr_entries requested\n");
exit(1);
}
}
}
static struct bloom_filter_bench *setup_skeleton(void)
{
struct bloom_filter_bench *skel;
check_args();
setup_libbpf();
skel = bloom_filter_bench__open();
if (!skel) {
fprintf(stderr, "failed to open skeleton\n");
exit(1);
}
skel->rodata->hashmap_use_bloom = ctx.hashmap_use_bloom;
skel->rodata->count_false_hits = ctx.count_false_hits;
/* Resize number of entries */
bpf_map__set_max_entries(skel->maps.hashmap, args.nr_entries);
bpf_map__set_max_entries(skel->maps.array_map, args.nr_entries);
bpf_map__set_max_entries(skel->maps.bloom_map, args.nr_entries);
/* Set value size */
bpf_map__set_value_size(skel->maps.array_map, args.value_size);
bpf_map__set_value_size(skel->maps.bloom_map, args.value_size);
bpf_map__set_value_size(skel->maps.hashmap, args.value_size);
/* For the hashmap, we use the value as the key as well */
bpf_map__set_key_size(skel->maps.hashmap, args.value_size);
skel->bss->value_size = args.value_size;
/* Set number of hash functions */
bpf_map__set_map_extra(skel->maps.bloom_map, args.nr_hash_funcs);
if (bloom_filter_bench__load(skel)) {
fprintf(stderr, "failed to load skeleton\n");
exit(1);
}
return skel;
}
static void bloom_lookup_setup(void)
{
struct bpf_link *link;
ctx.use_array_map = true;
ctx.skel = setup_skeleton();
populate_maps();
link = bpf_program__attach(ctx.skel->progs.bloom_lookup);
if (!link) {
fprintf(stderr, "failed to attach program!\n");
exit(1);
}
}
static void bloom_update_setup(void)
{
struct bpf_link *link;
ctx.use_array_map = true;
ctx.skel = setup_skeleton();
populate_maps();
link = bpf_program__attach(ctx.skel->progs.bloom_update);
if (!link) {
fprintf(stderr, "failed to attach program!\n");
exit(1);
}
}
static void false_positive_setup(void)
{
struct bpf_link *link;
ctx.use_hashmap = true;
ctx.hashmap_use_bloom = true;
ctx.count_false_hits = true;
ctx.skel = setup_skeleton();
populate_maps();
link = bpf_program__attach(ctx.skel->progs.bloom_hashmap_lookup);
if (!link) {
fprintf(stderr, "failed to attach program!\n");
exit(1);
}
}
static void hashmap_with_bloom_setup(void)
{
struct bpf_link *link;
ctx.use_hashmap = true;
ctx.hashmap_use_bloom = true;
ctx.skel = setup_skeleton();
populate_maps();
link = bpf_program__attach(ctx.skel->progs.bloom_hashmap_lookup);
if (!link) {
fprintf(stderr, "failed to attach program!\n");
exit(1);
}
}
static void hashmap_no_bloom_setup(void)
{
struct bpf_link *link;
ctx.use_hashmap = true;
ctx.skel = setup_skeleton();
populate_maps();
link = bpf_program__attach(ctx.skel->progs.bloom_hashmap_lookup);
if (!link) {
fprintf(stderr, "failed to attach program!\n");
exit(1);
}
}
static void measure(struct bench_res *res)
{
unsigned long total_hits = 0, total_drops = 0, total_false_hits = 0;
static unsigned long last_hits, last_drops, last_false_hits;
unsigned int nr_cpus = bpf_num_possible_cpus();
int hit_key, drop_key, false_hit_key;
int i;
hit_key = ctx.skel->rodata->hit_key;
drop_key = ctx.skel->rodata->drop_key;
false_hit_key = ctx.skel->rodata->false_hit_key;
if (ctx.skel->bss->error != 0) {
fprintf(stderr, "error (%d) when searching the bloom filter\n",
ctx.skel->bss->error);
exit(1);
}
for (i = 0; i < nr_cpus; i++) {
struct stat *s = (void *)&ctx.skel->bss->percpu_stats[i];
total_hits += s->stats[hit_key];
total_drops += s->stats[drop_key];
total_false_hits += s->stats[false_hit_key];
}
res->hits = total_hits - last_hits;
res->drops = total_drops - last_drops;
res->false_hits = total_false_hits - last_false_hits;
last_hits = total_hits;
last_drops = total_drops;
last_false_hits = total_false_hits;
}
const struct bench bench_bloom_lookup = {
.name = "bloom-lookup",
.argp = &bench_bloom_map_argp,
.validate = validate,
.setup = bloom_lookup_setup,
.producer_thread = producer,
.measure = measure,
.report_progress = hits_drops_report_progress,
.report_final = hits_drops_report_final,
};
const struct bench bench_bloom_update = {
.name = "bloom-update",
.argp = &bench_bloom_map_argp,
.validate = validate,
.setup = bloom_update_setup,
.producer_thread = producer,
.measure = measure,
.report_progress = hits_drops_report_progress,
.report_final = hits_drops_report_final,
};
const struct bench bench_bloom_false_positive = {
.name = "bloom-false-positive",
.argp = &bench_bloom_map_argp,
.validate = validate,
.setup = false_positive_setup,
.producer_thread = producer,
.measure = measure,
.report_progress = false_hits_report_progress,
.report_final = false_hits_report_final,
};
const struct bench bench_hashmap_without_bloom = {
.name = "hashmap-without-bloom",
.argp = &bench_bloom_map_argp,
.validate = validate,
.setup = hashmap_no_bloom_setup,
.producer_thread = producer,
.measure = measure,
.report_progress = hits_drops_report_progress,
.report_final = hits_drops_report_final,
};
const struct bench bench_hashmap_with_bloom = {
.name = "hashmap-with-bloom",
.argp = &bench_bloom_map_argp,
.validate = validate,
.setup = hashmap_with_bloom_setup,
.producer_thread = producer,
.measure = measure,
.report_progress = hits_drops_report_progress,
.report_final = hits_drops_report_final,
};