// SPDX-License-Identifier: GPL-2.0-only
/*
* tools/testing/selftests/kvm/lib/x86_64/processor.c
*
* Copyright (C) 2018, Google LLC.
*/
#include "linux/bitmap.h"
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "sev.h"
#ifndef NUM_INTERRUPTS
#define NUM_INTERRUPTS 256
#endif
#define KERNEL_CS 0x8
#define KERNEL_DS 0x10
#define KERNEL_TSS 0x18
#define MAX_NR_CPUID_ENTRIES 100
vm_vaddr_t exception_handlers;
bool host_cpu_is_amd;
bool host_cpu_is_intel;
bool is_forced_emulation_enabled;
uint64_t guest_tsc_khz;
static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
{
fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
"rcx: 0x%.16llx rdx: 0x%.16llx\n",
indent, "",
regs->rax, regs->rbx, regs->rcx, regs->rdx);
fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
"rsp: 0x%.16llx rbp: 0x%.16llx\n",
indent, "",
regs->rsi, regs->rdi, regs->rsp, regs->rbp);
fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
"r10: 0x%.16llx r11: 0x%.16llx\n",
indent, "",
regs->r8, regs->r9, regs->r10, regs->r11);
fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
"r14: 0x%.16llx r15: 0x%.16llx\n",
indent, "",
regs->r12, regs->r13, regs->r14, regs->r15);
fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
indent, "",
regs->rip, regs->rflags);
}
static void segment_dump(FILE *stream, struct kvm_segment *segment,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
"selector: 0x%.4x type: 0x%.2x\n",
indent, "", segment->base, segment->limit,
segment->selector, segment->type);
fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
indent, "", segment->present, segment->dpl,
segment->db, segment->s, segment->l);
fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
"unusable: 0x%.2x padding: 0x%.2x\n",
indent, "", segment->g, segment->avl,
segment->unusable, segment->padding);
}
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
"padding: 0x%.4x 0x%.4x 0x%.4x\n",
indent, "", dtable->base, dtable->limit,
dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}
static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
{
unsigned int i;
fprintf(stream, "%*scs:\n", indent, "");
segment_dump(stream, &sregs->cs, indent + 2);
fprintf(stream, "%*sds:\n", indent, "");
segment_dump(stream, &sregs->ds, indent + 2);
fprintf(stream, "%*ses:\n", indent, "");
segment_dump(stream, &sregs->es, indent + 2);
fprintf(stream, "%*sfs:\n", indent, "");
segment_dump(stream, &sregs->fs, indent + 2);
fprintf(stream, "%*sgs:\n", indent, "");
segment_dump(stream, &sregs->gs, indent + 2);
fprintf(stream, "%*sss:\n", indent, "");
segment_dump(stream, &sregs->ss, indent + 2);
fprintf(stream, "%*str:\n", indent, "");
segment_dump(stream, &sregs->tr, indent + 2);
fprintf(stream, "%*sldt:\n", indent, "");
segment_dump(stream, &sregs->ldt, indent + 2);
fprintf(stream, "%*sgdt:\n", indent, "");
dtable_dump(stream, &sregs->gdt, indent + 2);
fprintf(stream, "%*sidt:\n", indent, "");
dtable_dump(stream, &sregs->idt, indent + 2);
fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
"cr3: 0x%.16llx cr4: 0x%.16llx\n",
indent, "",
sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
"apic_base: 0x%.16llx\n",
indent, "",
sregs->cr8, sregs->efer, sregs->apic_base);
fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
fprintf(stream, "%*s%.16llx\n", indent + 2, "",
sregs->interrupt_bitmap[i]);
}
}
bool kvm_is_tdp_enabled(void)
{
if (host_cpu_is_intel)
return get_kvm_intel_param_bool("ept");
else
return get_kvm_amd_param_bool("npt");
}
void virt_arch_pgd_alloc(struct kvm_vm *vm)
{
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
/* If needed, create page map l4 table. */
if (!vm->pgd_created) {
vm->pgd = vm_alloc_page_table(vm);
vm->pgd_created = true;
}
}
static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
uint64_t vaddr, int level)
{
uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
"Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
level + 1, vaddr);
return &page_table[index];
}
static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
uint64_t *parent_pte,
uint64_t vaddr,
uint64_t paddr,
int current_level,
int target_level)
{
uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
paddr = vm_untag_gpa(vm, paddr);
if (!(*pte & PTE_PRESENT_MASK)) {
*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
if (current_level == target_level)
*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
else
*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
} else {
/*
* Entry already present. Assert that the caller doesn't want
* a hugepage at this level, and that there isn't a hugepage at
* this level.
*/
TEST_ASSERT(current_level != target_level,
"Cannot create hugepage at level: %u, vaddr: 0x%lx",
current_level, vaddr);
TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
"Cannot create page table at level: %u, vaddr: 0x%lx",
current_level, vaddr);
}
return pte;
}
void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
{
const uint64_t pg_size = PG_LEVEL_SIZE(level);
uint64_t *pml4e, *pdpe, *pde;
uint64_t *pte;
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
"Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT((vaddr % pg_size) == 0,
"Virtual address not aligned,\n"
"vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx", vaddr);
TEST_ASSERT((paddr % pg_size) == 0,
"Physical address not aligned,\n"
" paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
"Unexpected bits in paddr: %lx", paddr);
/*
* Allocate upper level page tables, if not already present. Return
* early if a hugepage was created.
*/
pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
if (*pml4e & PTE_LARGE_MASK)
return;
pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
if (*pdpe & PTE_LARGE_MASK)
return;
pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
if (*pde & PTE_LARGE_MASK)
return;
/* Fill in page table entry. */
pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
"PTE already present for 4k page at vaddr: 0x%lx", vaddr);
*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
/*
* Neither SEV nor TDX supports shared page tables, so only the final
* leaf PTE needs manually set the C/S-bit.
*/
if (vm_is_gpa_protected(vm, paddr))
*pte |= vm->arch.c_bit;
else
*pte |= vm->arch.s_bit;
}
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
}
void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint64_t nr_bytes, int level)
{
uint64_t pg_size = PG_LEVEL_SIZE(level);
uint64_t nr_pages = nr_bytes / pg_size;
int i;
TEST_ASSERT(nr_bytes % pg_size == 0,
"Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
nr_bytes, pg_size);
for (i = 0; i < nr_pages; i++) {
__virt_pg_map(vm, vaddr, paddr, level);
vaddr += pg_size;
paddr += pg_size;
}
}
static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
{
if (*pte & PTE_LARGE_MASK) {
TEST_ASSERT(*level == PG_LEVEL_NONE ||
*level == current_level,
"Unexpected hugepage at level %d", current_level);
*level = current_level;
}
return *level == current_level;
}
uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
int *level)
{
uint64_t *pml4e, *pdpe, *pde;
TEST_ASSERT(!vm->arch.is_pt_protected,
"Walking page tables of protected guests is impossible");
TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
"Invalid PG_LEVEL_* '%d'", *level);
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx",
vaddr);
/*
* Based on the mode check above there are 48 bits in the vaddr, so
* shift 16 to sign extend the last bit (bit-47),
*/
TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
"Canonical check failed. The virtual address is invalid.");
pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
return pml4e;
pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
return pdpe;
pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
return pde;
return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
}
uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
{
int level = PG_LEVEL_4K;
return __vm_get_page_table_entry(vm, vaddr, &level);
}
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
uint64_t *pml4e, *pml4e_start;
uint64_t *pdpe, *pdpe_start;
uint64_t *pde, *pde_start;
uint64_t *pte, *pte_start;
if (!vm->pgd_created)
return;
fprintf(stream, "%*s "
" no\n", indent, "");
fprintf(stream, "%*s index hvaddr gpaddr "
"addr w exec dirty\n",
indent, "");
pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
pml4e = &pml4e_start[n1];
if (!(*pml4e & PTE_PRESENT_MASK))
continue;
fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
" %u\n",
indent, "",
pml4e - pml4e_start, pml4e,
addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
pdpe = &pdpe_start[n2];
if (!(*pdpe & PTE_PRESENT_MASK))
continue;
fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
"%u %u\n",
indent, "",
pdpe - pdpe_start, pdpe,
addr_hva2gpa(vm, pdpe),
PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
!!(*pdpe & PTE_NX_MASK));
pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
pde = &pde_start[n3];
if (!(*pde & PTE_PRESENT_MASK))
continue;
fprintf(stream, "%*spde 0x%-3zx %p "
"0x%-12lx 0x%-10llx %u %u\n",
indent, "", pde - pde_start, pde,
addr_hva2gpa(vm, pde),
PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
!!(*pde & PTE_NX_MASK));
pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
pte = &pte_start[n4];
if (!(*pte & PTE_PRESENT_MASK))
continue;
fprintf(stream, "%*spte 0x%-3zx %p "
"0x%-12lx 0x%-10llx %u %u "
" %u 0x%-10lx\n",
indent, "",
pte - pte_start, pte,
addr_hva2gpa(vm, pte),
PTE_GET_PFN(*pte),
!!(*pte & PTE_WRITABLE_MASK),
!!(*pte & PTE_NX_MASK),
!!(*pte & PTE_DIRTY_MASK),
((uint64_t) n1 << 27)
| ((uint64_t) n2 << 18)
| ((uint64_t) n3 << 9)
| ((uint64_t) n4));
}
}
}
}
}
/*
* Set Unusable Segment
*
* Input Args: None
*
* Output Args:
* segp - Pointer to segment register
*
* Return: None
*
* Sets the segment register pointed to by @segp to an unusable state.
*/
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->unusable = true;
}
static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
void *gdt = addr_gva2hva(vm, vm->arch.gdt);
struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
desc->limit0 = segp->limit & 0xFFFF;
desc->base0 = segp->base & 0xFFFF;
desc->base1 = segp->base >> 16;
desc->type = segp->type;
desc->s = segp->s;
desc->dpl = segp->dpl;
desc->p = segp->present;
desc->limit1 = segp->limit >> 16;
desc->avl = segp->avl;
desc->l = segp->l;
desc->db = segp->db;
desc->g = segp->g;
desc->base2 = segp->base >> 24;
if (!segp->s)
desc->base3 = segp->base >> 32;
}
static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = KERNEL_CS;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
* | kFlagCodeReadable
*/
segp->g = true;
segp->l = true;
segp->present = 1;
}
static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = KERNEL_DS;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
* | kFlagDataWritable
*/
segp->g = true;
segp->present = true;
}
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
int level = PG_LEVEL_NONE;
uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
TEST_ASSERT(*pte & PTE_PRESENT_MASK,
"Leaf PTE not PRESENT for gva: 0x%08lx", gva);
/*
* No need for a hugepage mask on the PTE, x86-64 requires the "unused"
* address bits to be zero.
*/
return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
}
static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->base = base;
segp->limit = 0x67;
segp->selector = KERNEL_TSS;
segp->type = 0xb;
segp->present = 1;
}
static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
{
struct kvm_sregs sregs;
TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K);
/* Set mode specific system register values. */
vcpu_sregs_get(vcpu, &sregs);
sregs.idt.base = vm->arch.idt;
sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
sregs.gdt.base = vm->arch.gdt;
sregs.gdt.limit = getpagesize() - 1;
sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
kvm_seg_set_unusable(&sregs.ldt);
kvm_seg_set_kernel_code_64bit(&sregs.cs);
kvm_seg_set_kernel_data_64bit(&sregs.ds);
kvm_seg_set_kernel_data_64bit(&sregs.es);
kvm_seg_set_kernel_data_64bit(&sregs.gs);
kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
sregs.cr3 = vm->pgd;
vcpu_sregs_set(vcpu, &sregs);
}
static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
int dpl, unsigned short selector)
{
struct idt_entry *base =
(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
struct idt_entry *e = &base[vector];
memset(e, 0, sizeof(*e));
e->offset0 = addr;
e->selector = selector;
e->ist = 0;
e->type = 14;
e->dpl = dpl;
e->p = 1;
e->offset1 = addr >> 16;
e->offset2 = addr >> 32;
}
static bool kvm_fixup_exception(struct ex_regs *regs)
{
if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
return false;
if (regs->vector == DE_VECTOR)
return false;
regs->rip = regs->r11;
regs->r9 = regs->vector;
regs->r10 = regs->error_code;
return true;
}
void route_exception(struct ex_regs *regs)
{
typedef void(*handler)(struct ex_regs *);
handler *handlers = (handler *)exception_handlers;
if (handlers && handlers[regs->vector]) {
handlers[regs->vector](regs);
return;
}
if (kvm_fixup_exception(regs))
return;
ucall_assert(UCALL_UNHANDLED,
"Unhandled exception in guest", __FILE__, __LINE__,
"Unhandled exception '0x%lx' at guest RIP '0x%lx'",
regs->vector, regs->rip);
}
static void vm_init_descriptor_tables(struct kvm_vm *vm)
{
extern void *idt_handlers;
struct kvm_segment seg;
int i;
vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
/* Handlers have the same address in both address spaces.*/
for (i = 0; i < NUM_INTERRUPTS; i++)
set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
kvm_seg_set_kernel_code_64bit(&seg);
kvm_seg_fill_gdt_64bit(vm, &seg);
kvm_seg_set_kernel_data_64bit(&seg);
kvm_seg_fill_gdt_64bit(vm, &seg);
kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
kvm_seg_fill_gdt_64bit(vm, &seg);
}
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
void (*handler)(struct ex_regs *))
{
vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
handlers[vector] = (vm_vaddr_t)handler;
}
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
{
struct ucall uc;
if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED)
REPORT_GUEST_ASSERT(uc);
}
void kvm_arch_vm_post_create(struct kvm_vm *vm)
{
int r;
TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
"Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
vm_create_irqchip(vm);
vm_init_descriptor_tables(vm);
sync_global_to_guest(vm, host_cpu_is_intel);
sync_global_to_guest(vm, host_cpu_is_amd);
sync_global_to_guest(vm, is_forced_emulation_enabled);
if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
struct kvm_sev_init init = { 0 };
vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
}
r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
guest_tsc_khz = r;
sync_global_to_guest(vm, guest_tsc_khz);
}
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
{
struct kvm_regs regs;
vcpu_regs_get(vcpu, ®s);
regs.rip = (unsigned long) guest_code;
vcpu_regs_set(vcpu, ®s);
}
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
{
struct kvm_mp_state mp_state;
struct kvm_regs regs;
vm_vaddr_t stack_vaddr;
struct kvm_vcpu *vcpu;
stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
DEFAULT_GUEST_STACK_VADDR_MIN,
MEM_REGION_DATA);
stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
/*
* Align stack to match calling sequence requirements in section "The
* Stack Frame" of the System V ABI AMD64 Architecture Processor
* Supplement, which requires the value (%rsp + 8) to be a multiple of
* 16 when control is transferred to the function entry point.
*
* If this code is ever used to launch a vCPU with 32-bit entry point it
* may need to subtract 4 bytes instead of 8 bytes.
*/
TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
"__vm_vaddr_alloc() did not provide a page-aligned address");
stack_vaddr -= 8;
vcpu = __vm_vcpu_add(vm, vcpu_id);
vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
vcpu_init_sregs(vm, vcpu);
/* Setup guest general purpose registers */
vcpu_regs_get(vcpu, ®s);
regs.rflags = regs.rflags | 0x2;
regs.rsp = stack_vaddr;
vcpu_regs_set(vcpu, ®s);
/* Setup the MP state */
mp_state.mp_state = 0;
vcpu_mp_state_set(vcpu, &mp_state);
return vcpu;
}
struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
{
struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
return vcpu;
}
void vcpu_arch_free(struct kvm_vcpu *vcpu)
{
if (vcpu->cpuid)
free(vcpu->cpuid);
}
/* Do not use kvm_supported_cpuid directly except for validity checks. */
static void *kvm_supported_cpuid;
const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
{
int kvm_fd;
if (kvm_supported_cpuid)
return kvm_supported_cpuid;
kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
kvm_fd = open_kvm_dev_path_or_exit();
kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
(struct kvm_cpuid2 *)kvm_supported_cpuid);
close(kvm_fd);
return kvm_supported_cpuid;
}
static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
uint32_t function, uint32_t index,
uint8_t reg, uint8_t lo, uint8_t hi)
{
const struct kvm_cpuid_entry2 *entry;
int i;
for (i = 0; i < cpuid->nent; i++) {
entry = &cpuid->entries[i];
/*
* The output registers in kvm_cpuid_entry2 are in alphabetical
* order, but kvm_x86_cpu_feature matches that mess, so yay
* pointer shenanigans!
*/
if (entry->function == function && entry->index == index)
return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
}
return 0;
}
bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_feature feature)
{
return __kvm_cpu_has(cpuid, feature.function, feature.index,
feature.reg, feature.bit, feature.bit);
}
uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_property property)
{
return __kvm_cpu_has(cpuid, property.function, property.index,
property.reg, property.lo_bit, property.hi_bit);
}
uint64_t kvm_get_feature_msr(uint64_t msr_index)
{
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r, kvm_fd;
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
kvm_fd = open_kvm_dev_path_or_exit();
r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
close(kvm_fd);
return buffer.entry.data;
}
void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
{
int kvm_fd;
u64 bitmask;
long rc;
struct kvm_device_attr attr = {
.group = 0,
.attr = KVM_X86_XCOMP_GUEST_SUPP,
.addr = (unsigned long) &bitmask,
};
TEST_ASSERT(!kvm_supported_cpuid,
"kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
TEST_ASSERT(is_power_of_2(xfeature),
"Dynamic XFeatures must be enabled one at a time");
kvm_fd = open_kvm_dev_path_or_exit();
rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
close(kvm_fd);
if (rc == -1 && (errno == ENXIO || errno == EINVAL))
__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
__TEST_REQUIRE(bitmask & xfeature,
"Required XSAVE feature '%s' not supported", name);
TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
TEST_ASSERT(bitmask & xfeature,
"'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
name, xfeature, bitmask);
}
void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
{
TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
/* Allow overriding the default CPUID. */
if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
free(vcpu->cpuid);
vcpu->cpuid = NULL;
}
if (!vcpu->cpuid)
vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
vcpu_set_cpuid(vcpu);
}
void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_property property,
uint32_t value)
{
struct kvm_cpuid_entry2 *entry;
entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
(&entry->eax)[property.reg] |= value << property.lo_bit;
vcpu_set_cpuid(vcpu);
/* Sanity check that @value doesn't exceed the bounds in any way. */
TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
}
void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
{
struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
entry->eax = 0;
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
vcpu_set_cpuid(vcpu);
}
void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature,
bool set)
{
struct kvm_cpuid_entry2 *entry;
u32 *reg;
entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
reg = (&entry->eax) + feature.reg;
if (set)
*reg |= BIT(feature.bit);
else
*reg &= ~BIT(feature.bit);
vcpu_set_cpuid(vcpu);
}
uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
{
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
vcpu_msrs_get(vcpu, &buffer.header);
return buffer.entry.data;
}
int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
{
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
memset(&buffer, 0, sizeof(buffer));
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
buffer.entry.data = msr_value;
return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
}
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
{
va_list ap;
struct kvm_regs regs;
TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
" num: %u",
num);
va_start(ap, num);
vcpu_regs_get(vcpu, ®s);
if (num >= 1)
regs.rdi = va_arg(ap, uint64_t);
if (num >= 2)
regs.rsi = va_arg(ap, uint64_t);
if (num >= 3)
regs.rdx = va_arg(ap, uint64_t);
if (num >= 4)
regs.rcx = va_arg(ap, uint64_t);
if (num >= 5)
regs.r8 = va_arg(ap, uint64_t);
if (num >= 6)
regs.r9 = va_arg(ap, uint64_t);
vcpu_regs_set(vcpu, ®s);
va_end(ap);
}
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
fprintf(stream, "%*sregs:\n", indent + 2, "");
vcpu_regs_get(vcpu, ®s);
regs_dump(stream, ®s, indent + 4);
fprintf(stream, "%*ssregs:\n", indent + 2, "");
vcpu_sregs_get(vcpu, &sregs);
sregs_dump(stream, &sregs, indent + 4);
}
static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
{
struct kvm_msr_list *list;
struct kvm_msr_list nmsrs;
int kvm_fd, r;
kvm_fd = open_kvm_dev_path_or_exit();
nmsrs.nmsrs = 0;
if (!feature_msrs)
r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
else
r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
TEST_ASSERT(r == -1 && errno == E2BIG,
"Expected -E2BIG, got rc: %i errno: %i (%s)",
r, errno, strerror(errno));
list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
list->nmsrs = nmsrs.nmsrs;
if (!feature_msrs)
kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
else
kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
close(kvm_fd);
TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
"Number of MSRs in list changed, was %d, now %d",
nmsrs.nmsrs, list->nmsrs);
return list;
}
const struct kvm_msr_list *kvm_get_msr_index_list(void)
{
static const struct kvm_msr_list *list;
if (!list)
list = __kvm_get_msr_index_list(false);
return list;
}
const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
{
static const struct kvm_msr_list *list;
if (!list)
list = __kvm_get_msr_index_list(true);
return list;
}
bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
{
const struct kvm_msr_list *list = kvm_get_msr_index_list();
int i;
for (i = 0; i < list->nmsrs; ++i) {
if (list->indices[i] == msr_index)
return true;
}
return false;
}
static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
struct kvm_x86_state *state)
{
int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
if (size) {
state->xsave = malloc(size);
vcpu_xsave2_get(vcpu, state->xsave);
} else {
state->xsave = malloc(sizeof(struct kvm_xsave));
vcpu_xsave_get(vcpu, state->xsave);
}
}
struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
{
const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
struct kvm_x86_state *state;
int i;
static int nested_size = -1;
if (nested_size == -1) {
nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
TEST_ASSERT(nested_size <= sizeof(state->nested_),
"Nested state size too big, %i > %zi",
nested_size, sizeof(state->nested_));
}
/*
* When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
* guest state is consistent only after userspace re-enters the
* kernel with KVM_RUN. Complete IO prior to migrating state
* to a new VM.
*/
vcpu_run_complete_io(vcpu);
state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
vcpu_events_get(vcpu, &state->events);
vcpu_mp_state_get(vcpu, &state->mp_state);
vcpu_regs_get(vcpu, &state->regs);
vcpu_save_xsave_state(vcpu, state);
if (kvm_has_cap(KVM_CAP_XCRS))
vcpu_xcrs_get(vcpu, &state->xcrs);
vcpu_sregs_get(vcpu, &state->sregs);
if (nested_size) {
state->nested.size = sizeof(state->nested_);
vcpu_nested_state_get(vcpu, &state->nested);
TEST_ASSERT(state->nested.size <= nested_size,
"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
state->nested.size, nested_size);
} else {
state->nested.size = 0;
}
state->msrs.nmsrs = msr_list->nmsrs;
for (i = 0; i < msr_list->nmsrs; i++)
state->msrs.entries[i].index = msr_list->indices[i];
vcpu_msrs_get(vcpu, &state->msrs);
vcpu_debugregs_get(vcpu, &state->debugregs);
return state;
}
void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
{
vcpu_sregs_set(vcpu, &state->sregs);
vcpu_msrs_set(vcpu, &state->msrs);
if (kvm_has_cap(KVM_CAP_XCRS))
vcpu_xcrs_set(vcpu, &state->xcrs);
vcpu_xsave_set(vcpu, state->xsave);
vcpu_events_set(vcpu, &state->events);
vcpu_mp_state_set(vcpu, &state->mp_state);
vcpu_debugregs_set(vcpu, &state->debugregs);
vcpu_regs_set(vcpu, &state->regs);
if (state->nested.size)
vcpu_nested_state_set(vcpu, &state->nested);
}
void kvm_x86_state_cleanup(struct kvm_x86_state *state)
{
free(state->xsave);
free(state);
}
void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
{
if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
*va_bits = 32;
} else {
*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
}
}
void kvm_init_vm_address_properties(struct kvm_vm *vm)
{
if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
vm->arch.sev_fd = open_sev_dev_path_or_exit();
vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
vm->gpa_tag_mask = vm->arch.c_bit;
} else {
vm->arch.sev_fd = -1;
}
}
const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
uint32_t function, uint32_t index)
{
int i;
for (i = 0; i < cpuid->nent; i++) {
if (cpuid->entries[i].function == function &&
cpuid->entries[i].index == index)
return &cpuid->entries[i];
}
TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
return NULL;
}
#define X86_HYPERCALL(inputs...) \
({ \
uint64_t r; \
\
asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \
"jnz 1f\n\t" \
"vmcall\n\t" \
"jmp 2f\n\t" \
"1: vmmcall\n\t" \
"2:" \
: "=a"(r) \
: [use_vmmcall] "r" (host_cpu_is_amd), inputs); \
\
r; \
})
uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
uint64_t a3)
{
return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
}
uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
{
return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
}
void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
{
GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
}
const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
{
static struct kvm_cpuid2 *cpuid;
int kvm_fd;
if (cpuid)
return cpuid;
cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
kvm_fd = open_kvm_dev_path_or_exit();
kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
close(kvm_fd);
return cpuid;
}
void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
{
static struct kvm_cpuid2 *cpuid_full;
const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
int i, nent = 0;
if (!cpuid_full) {
cpuid_sys = kvm_get_supported_cpuid();
cpuid_hv = kvm_get_supported_hv_cpuid();
cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
if (!cpuid_full) {
perror("malloc");
abort();
}
/* Need to skip KVM CPUID leaves 0x400000xx */
for (i = 0; i < cpuid_sys->nent; i++) {
if (cpuid_sys->entries[i].function >= 0x40000000 &&
cpuid_sys->entries[i].function < 0x40000100)
continue;
cpuid_full->entries[nent] = cpuid_sys->entries[i];
nent++;
}
memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
cpuid_full->nent = nent + cpuid_hv->nent;
}
vcpu_init_cpuid(vcpu, cpuid_full);
}
const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
return cpuid;
}
unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
{
const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
unsigned long ht_gfn, max_gfn, max_pfn;
uint8_t maxphyaddr, guest_maxphyaddr;
/*
* Use "guest MAXPHYADDR" from KVM if it's available. Guest MAXPHYADDR
* enumerates the max _mappable_ GPA, which can be less than the raw
* MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
* doesn't support 5-level TDP.
*/
guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
"Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
/* Avoid reserved HyperTransport region on AMD processors. */
if (!host_cpu_is_amd)
return max_gfn;
/* On parts with <40 physical address bits, the area is fully hidden */
if (vm->pa_bits < 40)
return max_gfn;
/* Before family 17h, the HyperTransport area is just below 1T. */
ht_gfn = (1 << 28) - num_ht_pages;
if (this_cpu_family() < 0x17)
goto done;
/*
* Otherwise it's at the top of the physical address space, possibly
* reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
* the old conservative value if MAXPHYADDR is not enumerated.
*/
if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
goto done;
maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
ht_gfn = max_pfn - num_ht_pages;
done:
return min(max_gfn, ht_gfn - 1);
}
/* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
bool vm_is_unrestricted_guest(struct kvm_vm *vm)
{
/* Ensure that a KVM vendor-specific module is loaded. */
if (vm == NULL)
close(open_kvm_dev_path_or_exit());
return get_kvm_intel_param_bool("unrestricted_guest");
}
void kvm_selftest_arch_init(void)
{
host_cpu_is_intel = this_cpu_is_intel();
host_cpu_is_amd = this_cpu_is_amd();
is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
}
bool sys_clocksource_is_based_on_tsc(void)
{
char *clk_name = sys_get_cur_clocksource();
bool ret = !strcmp(clk_name, "tsc\n") ||
!strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
free(clk_name);
return ret;
}