// SPDX-License-Identifier: GPL-2.0
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <linux/bitfield.h>
#define MDSCR_KDE (1 << 13)
#define MDSCR_MDE (1 << 15)
#define MDSCR_SS (1 << 0)
#define DBGBCR_LEN8 (0xff << 5)
#define DBGBCR_EXEC (0x0 << 3)
#define DBGBCR_EL1 (0x1 << 1)
#define DBGBCR_E (0x1 << 0)
#define DBGBCR_LBN_SHIFT 16
#define DBGBCR_BT_SHIFT 20
#define DBGBCR_BT_ADDR_LINK_CTX (0x1 << DBGBCR_BT_SHIFT)
#define DBGBCR_BT_CTX_LINK (0x3 << DBGBCR_BT_SHIFT)
#define DBGWCR_LEN8 (0xff << 5)
#define DBGWCR_RD (0x1 << 3)
#define DBGWCR_WR (0x2 << 3)
#define DBGWCR_EL1 (0x1 << 1)
#define DBGWCR_E (0x1 << 0)
#define DBGWCR_LBN_SHIFT 16
#define DBGWCR_WT_SHIFT 20
#define DBGWCR_WT_LINK (0x1 << DBGWCR_WT_SHIFT)
#define SPSR_D (1 << 9)
#define SPSR_SS (1 << 21)
extern unsigned char sw_bp, sw_bp2, hw_bp, hw_bp2, bp_svc, bp_brk, hw_wp, ss_start, hw_bp_ctx;
extern unsigned char iter_ss_begin, iter_ss_end;
static volatile uint64_t sw_bp_addr, hw_bp_addr;
static volatile uint64_t wp_addr, wp_data_addr;
static volatile uint64_t svc_addr;
static volatile uint64_t ss_addr[4], ss_idx;
#define PC(v) ((uint64_t)&(v))
#define GEN_DEBUG_WRITE_REG(reg_name) \
static void write_##reg_name(int num, uint64_t val) \
{ \
switch (num) { \
case 0: \
write_sysreg(val, reg_name##0_el1); \
break; \
case 1: \
write_sysreg(val, reg_name##1_el1); \
break; \
case 2: \
write_sysreg(val, reg_name##2_el1); \
break; \
case 3: \
write_sysreg(val, reg_name##3_el1); \
break; \
case 4: \
write_sysreg(val, reg_name##4_el1); \
break; \
case 5: \
write_sysreg(val, reg_name##5_el1); \
break; \
case 6: \
write_sysreg(val, reg_name##6_el1); \
break; \
case 7: \
write_sysreg(val, reg_name##7_el1); \
break; \
case 8: \
write_sysreg(val, reg_name##8_el1); \
break; \
case 9: \
write_sysreg(val, reg_name##9_el1); \
break; \
case 10: \
write_sysreg(val, reg_name##10_el1); \
break; \
case 11: \
write_sysreg(val, reg_name##11_el1); \
break; \
case 12: \
write_sysreg(val, reg_name##12_el1); \
break; \
case 13: \
write_sysreg(val, reg_name##13_el1); \
break; \
case 14: \
write_sysreg(val, reg_name##14_el1); \
break; \
case 15: \
write_sysreg(val, reg_name##15_el1); \
break; \
default: \
GUEST_ASSERT(0); \
} \
}
/* Define write_dbgbcr()/write_dbgbvr()/write_dbgwcr()/write_dbgwvr() */
GEN_DEBUG_WRITE_REG(dbgbcr)
GEN_DEBUG_WRITE_REG(dbgbvr)
GEN_DEBUG_WRITE_REG(dbgwcr)
GEN_DEBUG_WRITE_REG(dbgwvr)
static void reset_debug_state(void)
{
uint8_t brps, wrps, i;
uint64_t dfr0;
asm volatile("msr daifset, #8");
write_sysreg(0, osdlr_el1);
write_sysreg(0, oslar_el1);
isb();
write_sysreg(0, mdscr_el1);
write_sysreg(0, contextidr_el1);
/* Reset all bcr/bvr/wcr/wvr registers */
dfr0 = read_sysreg(id_aa64dfr0_el1);
brps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_BRPs), dfr0);
for (i = 0; i <= brps; i++) {
write_dbgbcr(i, 0);
write_dbgbvr(i, 0);
}
wrps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_WRPs), dfr0);
for (i = 0; i <= wrps; i++) {
write_dbgwcr(i, 0);
write_dbgwvr(i, 0);
}
isb();
}
static void enable_os_lock(void)
{
write_sysreg(1, oslar_el1);
isb();
GUEST_ASSERT(read_sysreg(oslsr_el1) & 2);
}
static void enable_monitor_debug_exceptions(void)
{
uint32_t mdscr;
asm volatile("msr daifclr, #8");
mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_MDE;
write_sysreg(mdscr, mdscr_el1);
isb();
}
static void install_wp(uint8_t wpn, uint64_t addr)
{
uint32_t wcr;
wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E;
write_dbgwcr(wpn, wcr);
write_dbgwvr(wpn, addr);
isb();
enable_monitor_debug_exceptions();
}
static void install_hw_bp(uint8_t bpn, uint64_t addr)
{
uint32_t bcr;
bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E;
write_dbgbcr(bpn, bcr);
write_dbgbvr(bpn, addr);
isb();
enable_monitor_debug_exceptions();
}
static void install_wp_ctx(uint8_t addr_wp, uint8_t ctx_bp, uint64_t addr,
uint64_t ctx)
{
uint32_t wcr;
uint64_t ctx_bcr;
/* Setup a context-aware breakpoint for Linked Context ID Match */
ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E |
DBGBCR_BT_CTX_LINK;
write_dbgbcr(ctx_bp, ctx_bcr);
write_dbgbvr(ctx_bp, ctx);
/* Setup a linked watchpoint (linked to the context-aware breakpoint) */
wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E |
DBGWCR_WT_LINK | ((uint32_t)ctx_bp << DBGWCR_LBN_SHIFT);
write_dbgwcr(addr_wp, wcr);
write_dbgwvr(addr_wp, addr);
isb();
enable_monitor_debug_exceptions();
}
void install_hw_bp_ctx(uint8_t addr_bp, uint8_t ctx_bp, uint64_t addr,
uint64_t ctx)
{
uint32_t addr_bcr, ctx_bcr;
/* Setup a context-aware breakpoint for Linked Context ID Match */
ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E |
DBGBCR_BT_CTX_LINK;
write_dbgbcr(ctx_bp, ctx_bcr);
write_dbgbvr(ctx_bp, ctx);
/*
* Setup a normal breakpoint for Linked Address Match, and link it
* to the context-aware breakpoint.
*/
addr_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E |
DBGBCR_BT_ADDR_LINK_CTX |
((uint32_t)ctx_bp << DBGBCR_LBN_SHIFT);
write_dbgbcr(addr_bp, addr_bcr);
write_dbgbvr(addr_bp, addr);
isb();
enable_monitor_debug_exceptions();
}
static void install_ss(void)
{
uint32_t mdscr;
asm volatile("msr daifclr, #8");
mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_SS;
write_sysreg(mdscr, mdscr_el1);
isb();
}
static volatile char write_data;
static void guest_code(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn)
{
uint64_t ctx = 0xabcdef; /* a random context number */
/* Software-breakpoint */
reset_debug_state();
asm volatile("sw_bp: brk #0");
GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp));
/* Hardware-breakpoint */
reset_debug_state();
install_hw_bp(bpn, PC(hw_bp));
asm volatile("hw_bp: nop");
GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp));
/* Hardware-breakpoint + svc */
reset_debug_state();
install_hw_bp(bpn, PC(bp_svc));
asm volatile("bp_svc: svc #0");
GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_svc));
GUEST_ASSERT_EQ(svc_addr, PC(bp_svc) + 4);
/* Hardware-breakpoint + software-breakpoint */
reset_debug_state();
install_hw_bp(bpn, PC(bp_brk));
asm volatile("bp_brk: brk #0");
GUEST_ASSERT_EQ(sw_bp_addr, PC(bp_brk));
GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_brk));
/* Watchpoint */
reset_debug_state();
install_wp(wpn, PC(write_data));
write_data = 'x';
GUEST_ASSERT_EQ(write_data, 'x');
GUEST_ASSERT_EQ(wp_data_addr, PC(write_data));
/* Single-step */
reset_debug_state();
install_ss();
ss_idx = 0;
asm volatile("ss_start:\n"
"mrs x0, esr_el1\n"
"add x0, x0, #1\n"
"msr daifset, #8\n"
: : : "x0");
GUEST_ASSERT_EQ(ss_addr[0], PC(ss_start));
GUEST_ASSERT_EQ(ss_addr[1], PC(ss_start) + 4);
GUEST_ASSERT_EQ(ss_addr[2], PC(ss_start) + 8);
/* OS Lock does not block software-breakpoint */
reset_debug_state();
enable_os_lock();
sw_bp_addr = 0;
asm volatile("sw_bp2: brk #0");
GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp2));
/* OS Lock blocking hardware-breakpoint */
reset_debug_state();
enable_os_lock();
install_hw_bp(bpn, PC(hw_bp2));
hw_bp_addr = 0;
asm volatile("hw_bp2: nop");
GUEST_ASSERT_EQ(hw_bp_addr, 0);
/* OS Lock blocking watchpoint */
reset_debug_state();
enable_os_lock();
write_data = '\0';
wp_data_addr = 0;
install_wp(wpn, PC(write_data));
write_data = 'x';
GUEST_ASSERT_EQ(write_data, 'x');
GUEST_ASSERT_EQ(wp_data_addr, 0);
/* OS Lock blocking single-step */
reset_debug_state();
enable_os_lock();
ss_addr[0] = 0;
install_ss();
ss_idx = 0;
asm volatile("mrs x0, esr_el1\n\t"
"add x0, x0, #1\n\t"
"msr daifset, #8\n\t"
: : : "x0");
GUEST_ASSERT_EQ(ss_addr[0], 0);
/* Linked hardware-breakpoint */
hw_bp_addr = 0;
reset_debug_state();
install_hw_bp_ctx(bpn, ctx_bpn, PC(hw_bp_ctx), ctx);
/* Set context id */
write_sysreg(ctx, contextidr_el1);
isb();
asm volatile("hw_bp_ctx: nop");
write_sysreg(0, contextidr_el1);
GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp_ctx));
/* Linked watchpoint */
reset_debug_state();
install_wp_ctx(wpn, ctx_bpn, PC(write_data), ctx);
/* Set context id */
write_sysreg(ctx, contextidr_el1);
isb();
write_data = 'x';
GUEST_ASSERT_EQ(write_data, 'x');
GUEST_ASSERT_EQ(wp_data_addr, PC(write_data));
GUEST_DONE();
}
static void guest_sw_bp_handler(struct ex_regs *regs)
{
sw_bp_addr = regs->pc;
regs->pc += 4;
}
static void guest_hw_bp_handler(struct ex_regs *regs)
{
hw_bp_addr = regs->pc;
regs->pstate |= SPSR_D;
}
static void guest_wp_handler(struct ex_regs *regs)
{
wp_data_addr = read_sysreg(far_el1);
wp_addr = regs->pc;
regs->pstate |= SPSR_D;
}
static void guest_ss_handler(struct ex_regs *regs)
{
__GUEST_ASSERT(ss_idx < 4, "Expected index < 4, got '%lu'", ss_idx);
ss_addr[ss_idx++] = regs->pc;
regs->pstate |= SPSR_SS;
}
static void guest_svc_handler(struct ex_regs *regs)
{
svc_addr = regs->pc;
}
static void guest_code_ss(int test_cnt)
{
uint64_t i;
uint64_t bvr, wvr, w_bvr, w_wvr;
for (i = 0; i < test_cnt; i++) {
/* Bits [1:0] of dbg{b,w}vr are RES0 */
w_bvr = i << 2;
w_wvr = i << 2;
/*
* Enable Single Step execution. Note! This _must_ be a bare
* ucall as the ucall() path uses atomic operations to manage
* the ucall structures, and the built-in "atomics" are usually
* implemented via exclusive access instructions. The exlusive
* monitor is cleared on ERET, and so taking debug exceptions
* during a LDREX=>STREX sequence will prevent forward progress
* and hang the guest/test.
*/
GUEST_UCALL_NONE();
/*
* The userspace will verify that the pc is as expected during
* single step execution between iter_ss_begin and iter_ss_end.
*/
asm volatile("iter_ss_begin:nop\n");
write_sysreg(w_bvr, dbgbvr0_el1);
write_sysreg(w_wvr, dbgwvr0_el1);
bvr = read_sysreg(dbgbvr0_el1);
wvr = read_sysreg(dbgwvr0_el1);
/* Userspace disables Single Step when the end is nigh. */
asm volatile("iter_ss_end:\n");
GUEST_ASSERT_EQ(bvr, w_bvr);
GUEST_ASSERT_EQ(wvr, w_wvr);
}
GUEST_DONE();
}
static int debug_version(uint64_t id_aa64dfr0)
{
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), id_aa64dfr0);
}
static void test_guest_debug_exceptions(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
struct ucall uc;
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
vm_init_descriptor_tables(vm);
vcpu_init_descriptor_tables(vcpu);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_BRK_INS, guest_sw_bp_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_HW_BP_CURRENT, guest_hw_bp_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_WP_CURRENT, guest_wp_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_SSTEP_CURRENT, guest_ss_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_SVC64, guest_svc_handler);
/* Specify bpn/wpn/ctx_bpn to be tested */
vcpu_args_set(vcpu, 3, bpn, wpn, ctx_bpn);
pr_debug("Use bpn#%d, wpn#%d and ctx_bpn#%d\n", bpn, wpn, ctx_bpn);
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
done:
kvm_vm_free(vm);
}
void test_single_step_from_userspace(int test_cnt)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
struct ucall uc;
struct kvm_run *run;
uint64_t pc, cmd;
uint64_t test_pc = 0;
bool ss_enable = false;
struct kvm_guest_debug debug = {};
vm = vm_create_with_one_vcpu(&vcpu, guest_code_ss);
run = vcpu->run;
vcpu_args_set(vcpu, 1, test_cnt);
while (1) {
vcpu_run(vcpu);
if (run->exit_reason != KVM_EXIT_DEBUG) {
cmd = get_ucall(vcpu, &uc);
if (cmd == UCALL_ABORT) {
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
} else if (cmd == UCALL_DONE) {
break;
}
TEST_ASSERT(cmd == UCALL_NONE,
"Unexpected ucall cmd 0x%lx", cmd);
debug.control = KVM_GUESTDBG_ENABLE |
KVM_GUESTDBG_SINGLESTEP;
ss_enable = true;
vcpu_guest_debug_set(vcpu, &debug);
continue;
}
TEST_ASSERT(ss_enable, "Unexpected KVM_EXIT_DEBUG");
/* Check if the current pc is expected. */
vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);
TEST_ASSERT(!test_pc || pc == test_pc,
"Unexpected pc 0x%lx (expected 0x%lx)",
pc, test_pc);
if ((pc + 4) == (uint64_t)&iter_ss_end) {
test_pc = 0;
debug.control = KVM_GUESTDBG_ENABLE;
ss_enable = false;
vcpu_guest_debug_set(vcpu, &debug);
continue;
}
/*
* If the current pc is between iter_ss_bgin and
* iter_ss_end, the pc for the next KVM_EXIT_DEBUG should
* be the current pc + 4.
*/
if ((pc >= (uint64_t)&iter_ss_begin) &&
(pc < (uint64_t)&iter_ss_end))
test_pc = pc + 4;
else
test_pc = 0;
}
kvm_vm_free(vm);
}
/*
* Run debug testing using the various breakpoint#, watchpoint# and
* context-aware breakpoint# with the given ID_AA64DFR0_EL1 configuration.
*/
void test_guest_debug_exceptions_all(uint64_t aa64dfr0)
{
uint8_t brp_num, wrp_num, ctx_brp_num, normal_brp_num, ctx_brp_base;
int b, w, c;
/* Number of breakpoints */
brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_BRPs), aa64dfr0) + 1;
__TEST_REQUIRE(brp_num >= 2, "At least two breakpoints are required");
/* Number of watchpoints */
wrp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_WRPs), aa64dfr0) + 1;
/* Number of context aware breakpoints */
ctx_brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_CTX_CMPs), aa64dfr0) + 1;
pr_debug("%s brp_num:%d, wrp_num:%d, ctx_brp_num:%d\n", __func__,
brp_num, wrp_num, ctx_brp_num);
/* Number of normal (non-context aware) breakpoints */
normal_brp_num = brp_num - ctx_brp_num;
/* Lowest context aware breakpoint number */
ctx_brp_base = normal_brp_num;
/* Run tests with all supported breakpoints/watchpoints */
for (c = ctx_brp_base; c < ctx_brp_base + ctx_brp_num; c++) {
for (b = 0; b < normal_brp_num; b++) {
for (w = 0; w < wrp_num; w++)
test_guest_debug_exceptions(b, w, c);
}
}
}
static void help(char *name)
{
puts("");
printf("Usage: %s [-h] [-i iterations of the single step test]\n", name);
puts("");
exit(0);
}
int main(int argc, char *argv[])
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
int opt;
int ss_iteration = 10000;
uint64_t aa64dfr0;
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &aa64dfr0);
__TEST_REQUIRE(debug_version(aa64dfr0) >= 6,
"Armv8 debug architecture not supported.");
kvm_vm_free(vm);
while ((opt = getopt(argc, argv, "i:")) != -1) {
switch (opt) {
case 'i':
ss_iteration = atoi_positive("Number of iterations", optarg);
break;
case 'h':
default:
help(argv[0]);
break;
}
}
test_guest_debug_exceptions_all(aa64dfr0);
test_single_step_from_userspace(ss_iteration);
return 0;
}