// SPDX-License-Identifier: GPL-2.0
#include <api/fs/fs.h>
#include "cpumap.h"
#include "debug.h"
#include "event.h"
#include <assert.h>
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <linux/bitmap.h>
#include "asm/bug.h"
#include <linux/ctype.h>
#include <linux/zalloc.h>
#include <internal/cpumap.h>
static struct perf_cpu max_cpu_num;
static struct perf_cpu max_present_cpu_num;
static int max_node_num;
/**
* The numa node X as read from /sys/devices/system/node/nodeX indexed by the
* CPU number.
*/
static int *cpunode_map;
bool perf_record_cpu_map_data__test_bit(int i,
const struct perf_record_cpu_map_data *data)
{
int bit_word32 = i / 32;
__u32 bit_mask32 = 1U << (i & 31);
int bit_word64 = i / 64;
__u64 bit_mask64 = ((__u64)1) << (i & 63);
return (data->mask32_data.long_size == 4)
? (bit_word32 < data->mask32_data.nr) &&
(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
: (bit_word64 < data->mask64_data.nr) &&
(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
}
/* Read ith mask value from data into the given 64-bit sized bitmap */
static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
int i, unsigned long *bitmap)
{
#if __SIZEOF_LONG__ == 8
if (data->mask32_data.long_size == 4)
bitmap[0] = data->mask32_data.mask[i];
else
bitmap[0] = data->mask64_data.mask[i];
#else
if (data->mask32_data.long_size == 4) {
bitmap[0] = data->mask32_data.mask[i];
bitmap[1] = 0;
} else {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
bitmap[1] = (unsigned long)data->mask64_data.mask[i];
#else
bitmap[0] = (unsigned long)data->mask64_data.mask[i];
bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
#endif
}
#endif
}
static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
{
struct perf_cpu_map *map;
map = perf_cpu_map__empty_new(data->cpus_data.nr);
if (map) {
unsigned i;
for (i = 0; i < data->cpus_data.nr; i++) {
/*
* Special treatment for -1, which is not real cpu number,
* and we need to use (int) -1 to initialize map[i],
* otherwise it would become 65535.
*/
if (data->cpus_data.cpu[i] == (u16) -1)
RC_CHK_ACCESS(map)->map[i].cpu = -1;
else
RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
}
}
return map;
}
static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
{
DECLARE_BITMAP(local_copy, 64);
int weight = 0, mask_nr = data->mask32_data.nr;
struct perf_cpu_map *map;
for (int i = 0; i < mask_nr; i++) {
perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
weight += bitmap_weight(local_copy, 64);
}
map = perf_cpu_map__empty_new(weight);
if (!map)
return NULL;
for (int i = 0, j = 0; i < mask_nr; i++) {
int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE);
int cpu;
perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
for_each_set_bit(cpu, local_copy, 64)
RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
}
return map;
}
static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
{
struct perf_cpu_map *map;
unsigned int i = 0;
map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
if (!map)
return NULL;
if (data->range_cpu_data.any_cpu)
RC_CHK_ACCESS(map)->map[i++].cpu = -1;
for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
i++, cpu++)
RC_CHK_ACCESS(map)->map[i].cpu = cpu;
return map;
}
struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
{
switch (data->type) {
case PERF_CPU_MAP__CPUS:
return cpu_map__from_entries(data);
case PERF_CPU_MAP__MASK:
return cpu_map__from_mask(data);
case PERF_CPU_MAP__RANGE_CPUS:
return cpu_map__from_range(data);
default:
pr_err("cpu_map__new_data unknown type %d\n", data->type);
return NULL;
}
}
size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
{
#define BUFSIZE 1024
char buf[BUFSIZE];
cpu_map__snprint(map, buf, sizeof(buf));
return fprintf(fp, "%s\n", buf);
#undef BUFSIZE
}
struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
{
struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
if (cpus != NULL) {
for (int i = 0; i < nr; i++)
RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
}
return cpus;
}
struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
{
struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
if (cpus != NULL) {
int i;
cpus->nr = nr;
for (i = 0; i < nr; i++)
cpus->map[i] = aggr_cpu_id__empty();
}
return cpus;
}
static int cpu__get_topology_int(int cpu, const char *name, int *value)
{
char path[PATH_MAX];
snprintf(path, PATH_MAX,
"devices/system/cpu/cpu%d/topology/%s", cpu, name);
return sysfs__read_int(path, value);
}
int cpu__get_socket_id(struct perf_cpu cpu)
{
int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
return ret ?: value;
}
struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
{
struct aggr_cpu_id id = aggr_cpu_id__empty();
id.socket = cpu__get_socket_id(cpu);
return id;
}
static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
{
struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
if (a->node != b->node)
return a->node - b->node;
else if (a->socket != b->socket)
return a->socket - b->socket;
else if (a->die != b->die)
return a->die - b->die;
else if (a->cluster != b->cluster)
return a->cluster - b->cluster;
else if (a->cache_lvl != b->cache_lvl)
return a->cache_lvl - b->cache_lvl;
else if (a->cache != b->cache)
return a->cache - b->cache;
else if (a->core != b->core)
return a->core - b->core;
else
return a->thread_idx - b->thread_idx;
}
struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
aggr_cpu_id_get_t get_id,
void *data, bool needs_sort)
{
int idx;
struct perf_cpu cpu;
struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
if (!c)
return NULL;
/* Reset size as it may only be partially filled */
c->nr = 0;
perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
bool duplicate = false;
struct aggr_cpu_id cpu_id = get_id(cpu, data);
for (int j = 0; j < c->nr; j++) {
if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
duplicate = true;
break;
}
}
if (!duplicate) {
c->map[c->nr] = cpu_id;
c->nr++;
}
}
/* Trim. */
if (c->nr != perf_cpu_map__nr(cpus)) {
struct cpu_aggr_map *trimmed_c =
realloc(c,
sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
if (trimmed_c)
c = trimmed_c;
}
/* ensure we process id in increasing order */
if (needs_sort)
qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
return c;
}
int cpu__get_die_id(struct perf_cpu cpu)
{
int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
return ret ?: value;
}
struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
{
struct aggr_cpu_id id;
int die;
die = cpu__get_die_id(cpu);
/* There is no die_id on legacy system. */
if (die == -1)
die = 0;
/*
* die_id is relative to socket, so start
* with the socket ID and then add die to
* make a unique ID.
*/
id = aggr_cpu_id__socket(cpu, data);
if (aggr_cpu_id__is_empty(&id))
return id;
id.die = die;
return id;
}
int cpu__get_cluster_id(struct perf_cpu cpu)
{
int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
return ret ?: value;
}
struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
{
int cluster = cpu__get_cluster_id(cpu);
struct aggr_cpu_id id;
/* There is no cluster_id on legacy system. */
if (cluster == -1)
cluster = 0;
id = aggr_cpu_id__die(cpu, data);
if (aggr_cpu_id__is_empty(&id))
return id;
id.cluster = cluster;
return id;
}
int cpu__get_core_id(struct perf_cpu cpu)
{
int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
return ret ?: value;
}
struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
{
struct aggr_cpu_id id;
int core = cpu__get_core_id(cpu);
/* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
id = aggr_cpu_id__cluster(cpu, data);
if (aggr_cpu_id__is_empty(&id))
return id;
/*
* core_id is relative to socket and die, we need a global id.
* So we combine the result from cpu_map__get_die with the core id
*/
id.core = core;
return id;
}
struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
{
struct aggr_cpu_id id;
/* aggr_cpu_id__core returns a struct with socket, die and core set. */
id = aggr_cpu_id__core(cpu, data);
if (aggr_cpu_id__is_empty(&id))
return id;
id.cpu = cpu;
return id;
}
struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
{
struct aggr_cpu_id id = aggr_cpu_id__empty();
id.node = cpu__get_node(cpu);
return id;
}
struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
{
struct aggr_cpu_id id = aggr_cpu_id__empty();
/* it always aggregates to the cpu 0 */
cpu.cpu = 0;
id.cpu = cpu;
return id;
}
/* setup simple routines to easily access node numbers given a cpu number */
static int get_max_num(char *path, int *max)
{
size_t num;
char *buf;
int err = 0;
if (filename__read_str(path, &buf, &num))
return -1;
buf[num] = '\0';
/* start on the right, to find highest node num */
while (--num) {
if ((buf[num] == ',') || (buf[num] == '-')) {
num++;
break;
}
}
if (sscanf(&buf[num], "%d", max) < 1) {
err = -1;
goto out;
}
/* convert from 0-based to 1-based */
(*max)++;
out:
free(buf);
return err;
}
/* Determine highest possible cpu in the system for sparse allocation */
static void set_max_cpu_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_cpu_num.cpu = 4096;
max_present_cpu_num.cpu = 4096;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_cpu_num.cpu);
if (ret)
goto out;
/* get the highest present cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_present_cpu_num.cpu);
out:
if (ret)
pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
}
/* Determine highest possible node in the system for sparse allocation */
static void set_max_node_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_node_num = 8;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_node_num);
out:
if (ret)
pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
}
int cpu__max_node(void)
{
if (unlikely(!max_node_num))
set_max_node_num();
return max_node_num;
}
struct perf_cpu cpu__max_cpu(void)
{
if (unlikely(!max_cpu_num.cpu))
set_max_cpu_num();
return max_cpu_num;
}
struct perf_cpu cpu__max_present_cpu(void)
{
if (unlikely(!max_present_cpu_num.cpu))
set_max_cpu_num();
return max_present_cpu_num;
}
int cpu__get_node(struct perf_cpu cpu)
{
if (unlikely(cpunode_map == NULL)) {
pr_debug("cpu_map not initialized\n");
return -1;
}
return cpunode_map[cpu.cpu];
}
static int init_cpunode_map(void)
{
int i;
set_max_cpu_num();
set_max_node_num();
cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
if (!cpunode_map) {
pr_err("%s: calloc failed\n", __func__);
return -1;
}
for (i = 0; i < max_cpu_num.cpu; i++)
cpunode_map[i] = -1;
return 0;
}
int cpu__setup_cpunode_map(void)
{
struct dirent *dent1, *dent2;
DIR *dir1, *dir2;
unsigned int cpu, mem;
char buf[PATH_MAX];
char path[PATH_MAX];
const char *mnt;
int n;
/* initialize globals */
if (init_cpunode_map())
return -1;
mnt = sysfs__mountpoint();
if (!mnt)
return 0;
n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
if (n >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
return -1;
}
dir1 = opendir(path);
if (!dir1)
return 0;
/* walk tree and setup map */
while ((dent1 = readdir(dir1)) != NULL) {
if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
continue;
n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
if (n >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
continue;
}
dir2 = opendir(buf);
if (!dir2)
continue;
while ((dent2 = readdir(dir2)) != NULL) {
if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
continue;
cpunode_map[cpu] = mem;
}
closedir(dir2);
}
closedir(dir1);
return 0;
}
size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
{
int i, start = -1;
bool first = true;
size_t ret = 0;
#define COMMA first ? "" : ","
for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
struct perf_cpu cpu = { .cpu = INT_MAX };
bool last = i == perf_cpu_map__nr(map);
if (!last)
cpu = perf_cpu_map__cpu(map, i);
if (start == -1) {
start = i;
if (last) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
perf_cpu_map__cpu(map, i).cpu);
}
} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
int end = i - 1;
if (start == end) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
perf_cpu_map__cpu(map, start).cpu);
} else {
ret += snprintf(buf + ret, size - ret,
"%s%d-%d", COMMA,
perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
}
first = false;
start = i;
}
}
#undef COMMA
pr_debug2("cpumask list: %s\n", buf);
return ret;
}
static char hex_char(unsigned char val)
{
if (val < 10)
return val + '0';
if (val < 16)
return val - 10 + 'a';
return '?';
}
size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
{
int idx;
char *ptr = buf;
unsigned char *bitmap;
struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
if (buf == NULL)
return 0;
bitmap = zalloc(last_cpu.cpu / 8 + 1);
if (bitmap == NULL) {
buf[0] = '\0';
return 0;
}
perf_cpu_map__for_each_cpu(c, idx, map)
bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
unsigned char bits = bitmap[cpu / 8];
if (cpu % 8)
bits >>= 4;
else
bits &= 0xf;
*ptr++ = hex_char(bits);
if ((cpu % 32) == 0 && cpu > 0)
*ptr++ = ',';
}
*ptr = '\0';
free(bitmap);
buf[size - 1] = '\0';
return ptr - buf;
}
struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
{
static struct perf_cpu_map *online;
if (!online)
online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
return online;
}
bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
{
return a->thread_idx == b->thread_idx &&
a->node == b->node &&
a->socket == b->socket &&
a->die == b->die &&
a->cluster == b->cluster &&
a->cache_lvl == b->cache_lvl &&
a->cache == b->cache &&
a->core == b->core &&
a->cpu.cpu == b->cpu.cpu;
}
bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
{
return a->thread_idx == -1 &&
a->node == -1 &&
a->socket == -1 &&
a->die == -1 &&
a->cluster == -1 &&
a->cache_lvl == -1 &&
a->cache == -1 &&
a->core == -1 &&
a->cpu.cpu == -1;
}
struct aggr_cpu_id aggr_cpu_id__empty(void)
{
struct aggr_cpu_id ret = {
.thread_idx = -1,
.node = -1,
.socket = -1,
.die = -1,
.cluster = -1,
.cache_lvl = -1,
.cache = -1,
.core = -1,
.cpu = (struct perf_cpu){ .cpu = -1 },
};
return ret;
}