/* SPDX-License-Identifier: GPL-2.0 */
/*
* Hardware-accelerated CRC-32 variants for Linux on z Systems
*
* Use the z/Architecture Vector Extension Facility to accelerate the
* computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
* and Castagnoli.
*
* This CRC-32 implementation algorithm is bitreflected and processes
* the least-significant bit first (Little-Endian).
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <[email protected]>
*/
#include <linux/types.h>
#include <asm/fpu.h>
#include "crc32-vx.h"
/* Vector register range containing CRC-32 constants */
#define CONST_PERM_LE2BE 9
#define CONST_R2R1 10
#define CONST_R4R3 11
#define CONST_R5 12
#define CONST_RU_POLY 13
#define CONST_CRC_POLY 14
/*
* The CRC-32 constant block contains reduction constants to fold and
* process particular chunks of the input data stream in parallel.
*
* For the CRC-32 variants, the constants are precomputed according to
* these definitions:
*
* R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
* R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
* R3 = [(x128+32 mod P'(x) << 32)]' << 1
* R4 = [(x128-32 mod P'(x) << 32)]' << 1
* R5 = [(x64 mod P'(x) << 32)]' << 1
* R6 = [(x32 mod P'(x) << 32)]' << 1
*
* The bitreflected Barret reduction constant, u', is defined as
* the bit reversal of floor(x**64 / P(x)).
*
* where P(x) is the polynomial in the normal domain and the P'(x) is the
* polynomial in the reversed (bitreflected) domain.
*
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
*
* P(x) = 0x04C11DB7
* P'(x) = 0xEDB88320
*
* CRC-32C (Castagnoli) polynomials:
*
* P(x) = 0x1EDC6F41
* P'(x) = 0x82F63B78
*/
static unsigned long constants_CRC_32_LE[] = {
0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
0x1c6e41596, 0x154442bd4, /* R2, R1 */
0x0ccaa009e, 0x1751997d0, /* R4, R3 */
0x0, 0x163cd6124, /* R5 */
0x0, 0x1f7011641, /* u' */
0x0, 0x1db710641 /* P'(x) << 1 */
};
static unsigned long constants_CRC_32C_LE[] = {
0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
0x09e4addf8, 0x740eef02, /* R2, R1 */
0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */
0x0, 0x0dd45aab8, /* R5 */
0x0, 0x0dea713f1, /* u' */
0x0, 0x105ec76f0 /* P'(x) << 1 */
};
/**
* crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
* @crc: Initial CRC value, typically ~0.
* @buf: Input buffer pointer, performance might be improved if the
* buffer is on a doubleword boundary.
* @size: Size of the buffer, must be 64 bytes or greater.
* @constants: CRC-32 constant pool base pointer.
*
* Register usage:
* V0: Initial CRC value and intermediate constants and results.
* V1..V4: Data for CRC computation.
* V5..V8: Next data chunks that are fetched from the input buffer.
* V9: Constant for BE->LE conversion and shift operations
* V10..V14: CRC-32 constants.
*/
static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
{
/* Load CRC-32 constants */
fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
/*
* Load the initial CRC value.
*
* The CRC value is loaded into the rightmost word of the
* vector register and is later XORed with the LSB portion
* of the loaded input data.
*/
fpu_vzero(0); /* Clear V0 */
fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */
/* Load a 64-byte data chunk and XOR with CRC */
fpu_vlm(1, 4, buf);
fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
fpu_vx(1, 0, 1); /* V1 ^= CRC */
buf += 64;
size -= 64;
while (size >= 64) {
fpu_vlm(5, 8, buf);
fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
/*
* Perform a GF(2) multiplication of the doublewords in V1 with
* the R1 and R2 reduction constants in V0. The intermediate
* result is then folded (accumulated) with the next data chunk
* in V5 and stored in V1. Repeat this step for the register
* contents in V2, V3, and V4 respectively.
*/
fpu_vgfmag(1, CONST_R2R1, 1, 5);
fpu_vgfmag(2, CONST_R2R1, 2, 6);
fpu_vgfmag(3, CONST_R2R1, 3, 7);
fpu_vgfmag(4, CONST_R2R1, 4, 8);
buf += 64;
size -= 64;
}
/*
* Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
* and R4 and accumulating the next 128-bit chunk until a single 128-bit
* value remains.
*/
fpu_vgfmag(1, CONST_R4R3, 1, 2);
fpu_vgfmag(1, CONST_R4R3, 1, 3);
fpu_vgfmag(1, CONST_R4R3, 1, 4);
while (size >= 16) {
fpu_vl(2, buf);
fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
fpu_vgfmag(1, CONST_R4R3, 1, 2);
buf += 16;
size -= 16;
}
/*
* Set up a vector register for byte shifts. The shift value must
* be loaded in bits 1-4 in byte element 7 of a vector register.
* Shift by 8 bytes: 0x40
* Shift by 4 bytes: 0x20
*/
fpu_vleib(9, 0x40, 7);
/*
* Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
* to move R4 into the rightmost doubleword and set the leftmost
* doubleword to 0x1.
*/
fpu_vsrlb(0, CONST_R4R3, 9);
fpu_vleig(0, 1, 0);
/*
* Compute GF(2) product of V1 and V0. The rightmost doubleword
* of V1 is multiplied with R4. The leftmost doubleword of V1 is
* multiplied by 0x1 and is then XORed with rightmost product.
* Implicitly, the intermediate leftmost product becomes padded
*/
fpu_vgfmg(1, 0, 1);
/*
* Now do the final 32-bit fold by multiplying the rightmost word
* in V1 with R5 and XOR the result with the remaining bits in V1.
*
* To achieve this by a single VGFMAG, right shift V1 by a word
* and store the result in V2 which is then accumulated. Use the
* vector unpack instruction to load the rightmost half of the
* doubleword into the rightmost doubleword element of V1; the other
* half is loaded in the leftmost doubleword.
* The vector register with CONST_R5 contains the R5 constant in the
* rightmost doubleword and the leftmost doubleword is zero to ignore
* the leftmost product of V1.
*/
fpu_vleib(9, 0x20, 7); /* Shift by words */
fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */
fpu_vupllf(1, 1); /* Split rightmost doubleword */
fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */
/*
* Apply a Barret reduction to compute the final 32-bit CRC value.
*
* The input values to the Barret reduction are the degree-63 polynomial
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
* constant u. The Barret reduction result is the CRC value of R(x) mod
* P(x).
*
* The Barret reduction algorithm is defined as:
*
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
* 3. C(x) = R(x) XOR T2(x) mod x^32
*
* Note: The leftmost doubleword of vector register containing
* CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
* is zero and does not contribute to the final result.
*/
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
fpu_vupllf(2, 1);
fpu_vgfmg(2, CONST_RU_POLY, 2);
/*
* Compute the GF(2) product of the CRC polynomial with T1(x) in
* V2 and XOR the intermediate result, T2(x), with the value in V1.
* The final result is stored in word element 2 of V2.
*/
fpu_vupllf(2, 2);
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
return fpu_vlgvf(2, 2);
}
u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
{
return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
}
u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
{
return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
}