linux/arch/arm/mach-ep93xx/clock.c

// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * arch/arm/mach-ep93xx/clock.c
 * Clock control for Cirrus EP93xx chips.
 *
 * Copyright (C) 2006 Lennert Buytenhek <[email protected]>
 */

#define pr_fmt(fmt) "ep93xx " KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/soc/cirrus/ep93xx.h>

#include "hardware.h"

#include <asm/div64.h>

#include "soc.h"

static DEFINE_SPINLOCK(clk_lock);

static char fclk_divisors[] = { 1, 2, 4, 8, 16, 1, 1, 1 };
static char hclk_divisors[] = { 1, 2, 4, 5, 6, 8, 16, 32 };
static char pclk_divisors[] = { 1, 2, 4, 8 };

static char adc_divisors[] = { 16, 4 };
static char sclk_divisors[] = { 2, 4 };
static char lrclk_divisors[] = { 32, 64, 128 };

static const char * const mux_parents[] = {
	"xtali",
	"pll1",
	"pll2"
};

/*
 * PLL rate = 14.7456 MHz * (X1FBD + 1) * (X2FBD + 1) / (X2IPD + 1) / 2^PS
 */
static unsigned long calc_pll_rate(unsigned long long rate, u32 config_word)
{
	int i;

	rate *= ((config_word >> 11) & 0x1f) + 1;		/* X1FBD */
	rate *= ((config_word >> 5) & 0x3f) + 1;		/* X2FBD */
	do_div(rate, (config_word & 0x1f) + 1);			/* X2IPD */
	for (i = 0; i < ((config_word >> 16) & 3); i++)		/* PS */
		rate >>= 1;

	return (unsigned long)rate;
}

struct clk_psc {
	struct clk_hw hw;
	void __iomem *reg;
	u8 bit_idx;
	u32 mask;
	u8 shift;
	u8 width;
	char *div;
	u8 num_div;
	spinlock_t *lock;
};

#define to_clk_psc(_hw) container_of(_hw, struct clk_psc, hw)

static int ep93xx_clk_is_enabled(struct clk_hw *hw)
{
	struct clk_psc *psc = to_clk_psc(hw);
	u32 val = readl(psc->reg);

	return (val & BIT(psc->bit_idx)) ? 1 : 0;
}

static int ep93xx_clk_enable(struct clk_hw *hw)
{
	struct clk_psc *psc = to_clk_psc(hw);
	unsigned long flags = 0;
	u32 val;

	if (psc->lock)
		spin_lock_irqsave(psc->lock, flags);

	val = __raw_readl(psc->reg);
	val |= BIT(psc->bit_idx);

	ep93xx_syscon_swlocked_write(val, psc->reg);

	if (psc->lock)
		spin_unlock_irqrestore(psc->lock, flags);

	return 0;
}

static void ep93xx_clk_disable(struct clk_hw *hw)
{
	struct clk_psc *psc = to_clk_psc(hw);
	unsigned long flags = 0;
	u32 val;

	if (psc->lock)
		spin_lock_irqsave(psc->lock, flags);

	val = __raw_readl(psc->reg);
	val &= ~BIT(psc->bit_idx);

	ep93xx_syscon_swlocked_write(val, psc->reg);

	if (psc->lock)
		spin_unlock_irqrestore(psc->lock, flags);
}

static const struct clk_ops clk_ep93xx_gate_ops = {
	.enable = ep93xx_clk_enable,
	.disable = ep93xx_clk_disable,
	.is_enabled = ep93xx_clk_is_enabled,
};

static struct clk_hw *ep93xx_clk_register_gate(const char *name,
				    const char *parent_name,
				    void __iomem *reg,
				    u8 bit_idx)
{
	struct clk_init_data init;
	struct clk_psc *psc;
	struct clk *clk;

	psc = kzalloc(sizeof(*psc), GFP_KERNEL);
	if (!psc)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &clk_ep93xx_gate_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.parent_names = (parent_name ? &parent_name : NULL);
	init.num_parents = (parent_name ? 1 : 0);

	psc->reg = reg;
	psc->bit_idx = bit_idx;
	psc->hw.init = &init;
	psc->lock = &clk_lock;

	clk = clk_register(NULL, &psc->hw);
	if (IS_ERR(clk)) {
		kfree(psc);
		return ERR_CAST(clk);
	}

	return &psc->hw;
}

static u8 ep93xx_mux_get_parent(struct clk_hw *hw)
{
	struct clk_psc *psc = to_clk_psc(hw);
	u32 val = __raw_readl(psc->reg);

	if (!(val & EP93XX_SYSCON_CLKDIV_ESEL))
		return 0;

	if (!(val & EP93XX_SYSCON_CLKDIV_PSEL))
		return 1;

	return 2;
}

static int ep93xx_mux_set_parent_lock(struct clk_hw *hw, u8 index)
{
	struct clk_psc *psc = to_clk_psc(hw);
	unsigned long flags = 0;
	u32 val;

	if (index >= ARRAY_SIZE(mux_parents))
		return -EINVAL;

	if (psc->lock)
		spin_lock_irqsave(psc->lock, flags);

	val = __raw_readl(psc->reg);
	val &= ~(EP93XX_SYSCON_CLKDIV_ESEL | EP93XX_SYSCON_CLKDIV_PSEL);


	if (index != 0) {
		val |= EP93XX_SYSCON_CLKDIV_ESEL;
		val |= (index - 1) ? EP93XX_SYSCON_CLKDIV_PSEL : 0;
	}

	ep93xx_syscon_swlocked_write(val, psc->reg);

	if (psc->lock)
		spin_unlock_irqrestore(psc->lock, flags);

	return 0;
}

static bool is_best(unsigned long rate, unsigned long now,
		     unsigned long best)
{
	return abs(rate - now) < abs(rate - best);
}

static int ep93xx_mux_determine_rate(struct clk_hw *hw,
				struct clk_rate_request *req)
{
	unsigned long rate = req->rate;
	struct clk *best_parent = NULL;
	unsigned long __parent_rate;
	unsigned long best_rate = 0, actual_rate, mclk_rate;
	unsigned long best_parent_rate;
	int __div = 0, __pdiv = 0;
	int i;

	/*
	 * Try the two pll's and the external clock
	 * Because the valid predividers are 2, 2.5 and 3, we multiply
	 * all the clocks by 2 to avoid floating point math.
	 *
	 * This is based on the algorithm in the ep93xx raster guide:
	 * http://be-a-maverick.com/en/pubs/appNote/AN269REV1.pdf
	 *
	 */
	for (i = 0; i < ARRAY_SIZE(mux_parents); i++) {
		struct clk *parent = clk_get_sys(mux_parents[i], NULL);

		__parent_rate = clk_get_rate(parent);
		mclk_rate = __parent_rate * 2;

		/* Try each predivider value */
		for (__pdiv = 4; __pdiv <= 6; __pdiv++) {
			__div = mclk_rate / (rate * __pdiv);
			if (__div < 2 || __div > 127)
				continue;

			actual_rate = mclk_rate / (__pdiv * __div);
			if (is_best(rate, actual_rate, best_rate)) {
				best_rate = actual_rate;
				best_parent_rate = __parent_rate;
				best_parent = parent;
			}
		}
	}

	if (!best_parent)
		return -EINVAL;

	req->best_parent_rate = best_parent_rate;
	req->best_parent_hw = __clk_get_hw(best_parent);
	req->rate = best_rate;

	return 0;
}

static unsigned long ep93xx_ddiv_recalc_rate(struct clk_hw *hw,
						unsigned long parent_rate)
{
	struct clk_psc *psc = to_clk_psc(hw);
	unsigned long rate = 0;
	u32 val = __raw_readl(psc->reg);
	int __pdiv = ((val >> EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) & 0x03);
	int __div = val & 0x7f;

	if (__div > 0)
		rate = (parent_rate * 2) / ((__pdiv + 3) * __div);

	return rate;
}

static int ep93xx_ddiv_set_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long parent_rate)
{
	struct clk_psc *psc = to_clk_psc(hw);
	int pdiv = 0, div = 0;
	unsigned long best_rate = 0, actual_rate, mclk_rate;
	int __div = 0, __pdiv = 0;
	u32 val;

	mclk_rate = parent_rate * 2;

	for (__pdiv = 4; __pdiv <= 6; __pdiv++) {
		__div = mclk_rate / (rate * __pdiv);
		if (__div < 2 || __div > 127)
			continue;

		actual_rate = mclk_rate / (__pdiv * __div);
		if (is_best(rate, actual_rate, best_rate)) {
			pdiv = __pdiv - 3;
			div = __div;
			best_rate = actual_rate;
		}
	}

	if (!best_rate)
		return -EINVAL;

	val = __raw_readl(psc->reg);

	/* Clear old dividers */
	val &= ~0x37f;

	/* Set the new pdiv and div bits for the new clock rate */
	val |= (pdiv << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | div;
	ep93xx_syscon_swlocked_write(val, psc->reg);

	return 0;
}

static const struct clk_ops clk_ddiv_ops = {
	.enable = ep93xx_clk_enable,
	.disable = ep93xx_clk_disable,
	.is_enabled = ep93xx_clk_is_enabled,
	.get_parent = ep93xx_mux_get_parent,
	.set_parent = ep93xx_mux_set_parent_lock,
	.determine_rate = ep93xx_mux_determine_rate,
	.recalc_rate = ep93xx_ddiv_recalc_rate,
	.set_rate = ep93xx_ddiv_set_rate,
};

static struct clk_hw *clk_hw_register_ddiv(const char *name,
					  void __iomem *reg,
					  u8 bit_idx)
{
	struct clk_init_data init;
	struct clk_psc *psc;
	struct clk *clk;

	psc = kzalloc(sizeof(*psc), GFP_KERNEL);
	if (!psc)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &clk_ddiv_ops;
	init.flags = 0;
	init.parent_names = mux_parents;
	init.num_parents = ARRAY_SIZE(mux_parents);

	psc->reg = reg;
	psc->bit_idx = bit_idx;
	psc->lock = &clk_lock;
	psc->hw.init = &init;

	clk = clk_register(NULL, &psc->hw);
	if (IS_ERR(clk)) {
		kfree(psc);
		return ERR_CAST(clk);
	}
	return &psc->hw;
}

static unsigned long ep93xx_div_recalc_rate(struct clk_hw *hw,
					    unsigned long parent_rate)
{
	struct clk_psc *psc = to_clk_psc(hw);
	u32 val = __raw_readl(psc->reg);
	u8 index = (val & psc->mask) >> psc->shift;

	if (index > psc->num_div)
		return 0;

	return DIV_ROUND_UP_ULL(parent_rate, psc->div[index]);
}

static long ep93xx_div_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *parent_rate)
{
	struct clk_psc *psc = to_clk_psc(hw);
	unsigned long best = 0, now, maxdiv;
	int i;

	maxdiv = psc->div[psc->num_div - 1];

	for (i = 0; i < psc->num_div; i++) {
		if ((rate * psc->div[i]) == *parent_rate)
			return DIV_ROUND_UP_ULL((u64)*parent_rate, psc->div[i]);

		now = DIV_ROUND_UP_ULL((u64)*parent_rate, psc->div[i]);

		if (is_best(rate, now, best))
			best = now;
	}

	if (!best)
		best = DIV_ROUND_UP_ULL(*parent_rate, maxdiv);

	return best;
}

static int ep93xx_div_set_rate(struct clk_hw *hw, unsigned long rate,
			       unsigned long parent_rate)
{
	struct clk_psc *psc = to_clk_psc(hw);
	u32 val = __raw_readl(psc->reg) & ~psc->mask;
	int i;

	for (i = 0; i < psc->num_div; i++)
		if (rate == parent_rate / psc->div[i]) {
			val |= i << psc->shift;
			break;
		}

	if (i == psc->num_div)
		return -EINVAL;

	ep93xx_syscon_swlocked_write(val, psc->reg);

	return 0;
}

static const struct clk_ops ep93xx_div_ops = {
	.enable = ep93xx_clk_enable,
	.disable = ep93xx_clk_disable,
	.is_enabled = ep93xx_clk_is_enabled,
	.recalc_rate = ep93xx_div_recalc_rate,
	.round_rate = ep93xx_div_round_rate,
	.set_rate = ep93xx_div_set_rate,
};

static struct clk_hw *clk_hw_register_div(const char *name,
					  const char *parent_name,
					  void __iomem *reg,
					  u8 enable_bit,
					  u8 shift,
					  u8 width,
					  char *clk_divisors,
					  u8 num_div)
{
	struct clk_init_data init;
	struct clk_psc *psc;
	struct clk *clk;

	psc = kzalloc(sizeof(*psc), GFP_KERNEL);
	if (!psc)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &ep93xx_div_ops;
	init.flags = 0;
	init.parent_names = (parent_name ? &parent_name : NULL);
	init.num_parents = 1;

	psc->reg = reg;
	psc->bit_idx = enable_bit;
	psc->mask = GENMASK(shift + width - 1, shift);
	psc->shift = shift;
	psc->div = clk_divisors;
	psc->num_div = num_div;
	psc->lock = &clk_lock;
	psc->hw.init = &init;

	clk = clk_register(NULL, &psc->hw);
	if (IS_ERR(clk)) {
		kfree(psc);
		return ERR_CAST(clk);
	}
	return &psc->hw;
}

struct ep93xx_gate {
	unsigned int bit;
	const char *dev_id;
	const char *con_id;
};

static struct ep93xx_gate ep93xx_uarts[] = {
	{EP93XX_SYSCON_DEVCFG_U1EN, "apb:uart1", NULL},
	{EP93XX_SYSCON_DEVCFG_U2EN, "apb:uart2", NULL},
	{EP93XX_SYSCON_DEVCFG_U3EN, "apb:uart3", NULL},
};

static void __init ep93xx_uart_clock_init(void)
{
	unsigned int i;
	struct clk_hw *hw;
	u32 value;
	unsigned int clk_uart_div;

	value = __raw_readl(EP93XX_SYSCON_PWRCNT);
	if (value & EP93XX_SYSCON_PWRCNT_UARTBAUD)
		clk_uart_div = 1;
	else
		clk_uart_div = 2;

	hw = clk_hw_register_fixed_factor(NULL, "uart", "xtali", 0, 1, clk_uart_div);

	/* parenting uart gate clocks to uart clock */
	for (i = 0; i < ARRAY_SIZE(ep93xx_uarts); i++) {
		hw = ep93xx_clk_register_gate(ep93xx_uarts[i].dev_id,
					"uart",
					EP93XX_SYSCON_DEVCFG,
					ep93xx_uarts[i].bit);

		clk_hw_register_clkdev(hw, NULL, ep93xx_uarts[i].dev_id);
	}
}

static struct ep93xx_gate ep93xx_dmas[] = {
	{EP93XX_SYSCON_PWRCNT_DMA_M2P0, NULL, "m2p0"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P1, NULL, "m2p1"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P2, NULL, "m2p2"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P3, NULL, "m2p3"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P4, NULL, "m2p4"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P5, NULL, "m2p5"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P6, NULL, "m2p6"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P7, NULL, "m2p7"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P8, NULL, "m2p8"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2P9, NULL, "m2p9"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2M0, NULL, "m2m0"},
	{EP93XX_SYSCON_PWRCNT_DMA_M2M1, NULL, "m2m1"},
};

static void __init ep93xx_dma_clock_init(void)
{
	unsigned int i;
	struct clk_hw *hw;
	int ret;

	for (i = 0; i < ARRAY_SIZE(ep93xx_dmas); i++) {
		hw = clk_hw_register_gate(NULL, ep93xx_dmas[i].con_id,
					"hclk", 0,
					EP93XX_SYSCON_PWRCNT,
					ep93xx_dmas[i].bit,
					0,
					&clk_lock);

		ret = clk_hw_register_clkdev(hw, ep93xx_dmas[i].con_id, NULL);
		if (ret)
			pr_err("%s: failed to register lookup %s\n",
			       __func__, ep93xx_dmas[i].con_id);
	}
}

static int __init ep93xx_clock_init(void)
{
	u32 value;
	struct clk_hw *hw;
	unsigned long clk_pll1_rate;
	unsigned long clk_f_rate;
	unsigned long clk_h_rate;
	unsigned long clk_p_rate;
	unsigned long clk_pll2_rate;
	unsigned int clk_f_div;
	unsigned int clk_h_div;
	unsigned int clk_p_div;
	unsigned int clk_usb_div;
	unsigned long clk_spi_div;

	hw = clk_hw_register_fixed_rate(NULL, "xtali", NULL, 0, EP93XX_EXT_CLK_RATE);
	clk_hw_register_clkdev(hw, NULL, "xtali");

	/* Determine the bootloader configured pll1 rate */
	value = __raw_readl(EP93XX_SYSCON_CLKSET1);
	if (!(value & EP93XX_SYSCON_CLKSET1_NBYP1))
		clk_pll1_rate = EP93XX_EXT_CLK_RATE;
	else
		clk_pll1_rate = calc_pll_rate(EP93XX_EXT_CLK_RATE, value);

	hw = clk_hw_register_fixed_rate(NULL, "pll1", "xtali", 0, clk_pll1_rate);
	clk_hw_register_clkdev(hw, NULL, "pll1");

	/* Initialize the pll1 derived clocks */
	clk_f_div = fclk_divisors[(value >> 25) & 0x7];
	clk_h_div = hclk_divisors[(value >> 20) & 0x7];
	clk_p_div = pclk_divisors[(value >> 18) & 0x3];

	hw = clk_hw_register_fixed_factor(NULL, "fclk", "pll1", 0, 1, clk_f_div);
	clk_f_rate = clk_get_rate(hw->clk);
	hw = clk_hw_register_fixed_factor(NULL, "hclk", "pll1", 0, 1, clk_h_div);
	clk_h_rate = clk_get_rate(hw->clk);
	hw = clk_hw_register_fixed_factor(NULL, "pclk", "hclk", 0, 1, clk_p_div);
	clk_p_rate = clk_get_rate(hw->clk);

	clk_hw_register_clkdev(hw, "apb_pclk", NULL);

	ep93xx_dma_clock_init();

	/* Determine the bootloader configured pll2 rate */
	value = __raw_readl(EP93XX_SYSCON_CLKSET2);
	if (!(value & EP93XX_SYSCON_CLKSET2_NBYP2))
		clk_pll2_rate = EP93XX_EXT_CLK_RATE;
	else if (value & EP93XX_SYSCON_CLKSET2_PLL2_EN)
		clk_pll2_rate = calc_pll_rate(EP93XX_EXT_CLK_RATE, value);
	else
		clk_pll2_rate = 0;

	hw = clk_hw_register_fixed_rate(NULL, "pll2", "xtali", 0, clk_pll2_rate);
	clk_hw_register_clkdev(hw, NULL, "pll2");

	/* Initialize the pll2 derived clocks */
	/*
	 * These four bits set the divide ratio between the PLL2
	 * output and the USB clock.
	 * 0000 - Divide by 1
	 * 0001 - Divide by 2
	 * 0010 - Divide by 3
	 * 0011 - Divide by 4
	 * 0100 - Divide by 5
	 * 0101 - Divide by 6
	 * 0110 - Divide by 7
	 * 0111 - Divide by 8
	 * 1000 - Divide by 9
	 * 1001 - Divide by 10
	 * 1010 - Divide by 11
	 * 1011 - Divide by 12
	 * 1100 - Divide by 13
	 * 1101 - Divide by 14
	 * 1110 - Divide by 15
	 * 1111 - Divide by 1
	 * On power-on-reset these bits are reset to 0000b.
	 */
	clk_usb_div = (((value >> 28) & 0xf) + 1);
	hw = clk_hw_register_fixed_factor(NULL, "usb_clk", "pll2", 0, 1, clk_usb_div);
	hw = clk_hw_register_gate(NULL, "ohci-platform",
				"usb_clk", 0,
				EP93XX_SYSCON_PWRCNT,
				EP93XX_SYSCON_PWRCNT_USH_EN,
				0,
				&clk_lock);
	clk_hw_register_clkdev(hw, NULL, "ohci-platform");

	/*
	 * EP93xx SSP clock rate was doubled in version E2. For more information
	 * see:
	 *     http://www.cirrus.com/en/pubs/appNote/AN273REV4.pdf
	 */
	clk_spi_div = 1;
	if (ep93xx_chip_revision() < EP93XX_CHIP_REV_E2)
		clk_spi_div = 2;
	hw = clk_hw_register_fixed_factor(NULL, "ep93xx-spi.0", "xtali", 0, 1, clk_spi_div);
	clk_hw_register_clkdev(hw, NULL, "ep93xx-spi.0");

	/* pwm clock */
	hw = clk_hw_register_fixed_factor(NULL, "pwm_clk", "xtali", 0, 1, 1);
	clk_hw_register_clkdev(hw, "pwm_clk", NULL);

	pr_info("PLL1 running at %ld MHz, PLL2 at %ld MHz\n",
		clk_pll1_rate / 1000000, clk_pll2_rate / 1000000);
	pr_info("FCLK %ld MHz, HCLK %ld MHz, PCLK %ld MHz\n",
		clk_f_rate / 1000000, clk_h_rate / 1000000,
		clk_p_rate / 1000000);

	ep93xx_uart_clock_init();

	/* touchscreen/adc clock */
	hw = clk_hw_register_div("ep93xx-adc",
				"xtali",
				EP93XX_SYSCON_KEYTCHCLKDIV,
				EP93XX_SYSCON_KEYTCHCLKDIV_TSEN,
				EP93XX_SYSCON_KEYTCHCLKDIV_ADIV,
				1,
				adc_divisors,
				ARRAY_SIZE(adc_divisors));

	clk_hw_register_clkdev(hw, NULL, "ep93xx-adc");

	/* keypad clock */
	hw = clk_hw_register_div("ep93xx-keypad",
				"xtali",
				EP93XX_SYSCON_KEYTCHCLKDIV,
				EP93XX_SYSCON_KEYTCHCLKDIV_KEN,
				EP93XX_SYSCON_KEYTCHCLKDIV_KDIV,
				1,
				adc_divisors,
				ARRAY_SIZE(adc_divisors));

	clk_hw_register_clkdev(hw, NULL, "ep93xx-keypad");

	/* On reset PDIV and VDIV is set to zero, while PDIV zero
	 * means clock disable, VDIV shouldn't be zero.
	 * So i set both dividers to minimum.
	 */
	/* ENA - Enable CLK divider. */
	/* PDIV - 00 - Disable clock */
	/* VDIV - at least 2 */
	/* Check and enable video clk registers */
	value = __raw_readl(EP93XX_SYSCON_VIDCLKDIV);
	value |= (1 << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | 2;
	ep93xx_syscon_swlocked_write(value, EP93XX_SYSCON_VIDCLKDIV);

	/* check and enable i2s clk registers */
	value = __raw_readl(EP93XX_SYSCON_I2SCLKDIV);
	value |= (1 << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | 2;
	ep93xx_syscon_swlocked_write(value, EP93XX_SYSCON_I2SCLKDIV);

	/* video clk */
	hw = clk_hw_register_ddiv("ep93xx-fb",
				EP93XX_SYSCON_VIDCLKDIV,
				EP93XX_SYSCON_CLKDIV_ENABLE);

	clk_hw_register_clkdev(hw, NULL, "ep93xx-fb");

	/* i2s clk */
	hw = clk_hw_register_ddiv("mclk",
				EP93XX_SYSCON_I2SCLKDIV,
				EP93XX_SYSCON_CLKDIV_ENABLE);

	clk_hw_register_clkdev(hw, "mclk", "ep93xx-i2s");

	/* i2s sclk */
#define EP93XX_I2SCLKDIV_SDIV_SHIFT	16
#define EP93XX_I2SCLKDIV_SDIV_WIDTH	1
	hw = clk_hw_register_div("sclk",
				"mclk",
				EP93XX_SYSCON_I2SCLKDIV,
				EP93XX_SYSCON_I2SCLKDIV_SENA,
				EP93XX_I2SCLKDIV_SDIV_SHIFT,
				EP93XX_I2SCLKDIV_SDIV_WIDTH,
				sclk_divisors,
				ARRAY_SIZE(sclk_divisors));

	clk_hw_register_clkdev(hw, "sclk", "ep93xx-i2s");

	/* i2s lrclk */
#define EP93XX_I2SCLKDIV_LRDIV32_SHIFT	17
#define EP93XX_I2SCLKDIV_LRDIV32_WIDTH	3
	hw = clk_hw_register_div("lrclk",
				"sclk",
				EP93XX_SYSCON_I2SCLKDIV,
				EP93XX_SYSCON_I2SCLKDIV_SENA,
				EP93XX_I2SCLKDIV_LRDIV32_SHIFT,
				EP93XX_I2SCLKDIV_LRDIV32_WIDTH,
				lrclk_divisors,
				ARRAY_SIZE(lrclk_divisors));

	clk_hw_register_clkdev(hw, "lrclk", "ep93xx-i2s");

	return 0;
}
postcore_initcall(ep93xx_clock_init);