// SPDX-License-Identifier: GPL-2.0-only
/*
* Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
*
* Copyright (C) 2015 - 2018 Linaro Ltd.
* Copyright (C) 2023 Google LLC.
*/
#include <asm/hwcap.h>
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/b128ops.h>
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/gf128mul.h>
#include <crypto/scatterwalk.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/jump_label.h>
#include <linux/module.h>
MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <[email protected]>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("ghash");
MODULE_ALIAS_CRYPTO("gcm(aes)");
MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
#define RFC4106_NONCE_SIZE 4
struct ghash_key {
be128 k;
u64 h[][2];
};
struct gcm_key {
u64 h[4][2];
u32 rk[AES_MAX_KEYLENGTH_U32];
int rounds;
u8 nonce[]; // for RFC4106 nonce
};
struct ghash_desc_ctx {
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
u8 buf[GHASH_BLOCK_SIZE];
u32 count;
};
struct ghash_async_ctx {
struct cryptd_ahash *cryptd_tfm;
};
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
u64 const h[][2], const char *head);
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
u64 const h[][2], const char *head);
static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);
static int ghash_init(struct shash_desc *desc)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
*ctx = (struct ghash_desc_ctx){};
return 0;
}
static void ghash_do_update(int blocks, u64 dg[], const char *src,
struct ghash_key *key, const char *head)
{
if (likely(crypto_simd_usable())) {
kernel_neon_begin();
if (static_branch_likely(&use_p64))
pmull_ghash_update_p64(blocks, dg, src, key->h, head);
else
pmull_ghash_update_p8(blocks, dg, src, key->h, head);
kernel_neon_end();
} else {
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
do {
const u8 *in = src;
if (head) {
in = head;
blocks++;
head = NULL;
} else {
src += GHASH_BLOCK_SIZE;
}
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
gf128mul_lle(&dst, &key->k);
} while (--blocks);
dg[0] = be64_to_cpu(dst.b);
dg[1] = be64_to_cpu(dst.a);
}
}
static int ghash_update(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
ctx->count += len;
if ((partial + len) >= GHASH_BLOCK_SIZE) {
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
int blocks;
if (partial) {
int p = GHASH_BLOCK_SIZE - partial;
memcpy(ctx->buf + partial, src, p);
src += p;
len -= p;
}
blocks = len / GHASH_BLOCK_SIZE;
len %= GHASH_BLOCK_SIZE;
ghash_do_update(blocks, ctx->digest, src, key,
partial ? ctx->buf : NULL);
src += blocks * GHASH_BLOCK_SIZE;
partial = 0;
}
if (len)
memcpy(ctx->buf + partial, src, len);
return 0;
}
static int ghash_final(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
if (partial) {
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
}
put_unaligned_be64(ctx->digest[1], dst);
put_unaligned_be64(ctx->digest[0], dst + 8);
*ctx = (struct ghash_desc_ctx){};
return 0;
}
static void ghash_reflect(u64 h[], const be128 *k)
{
u64 carry = be64_to_cpu(k->a) >> 63;
h[0] = (be64_to_cpu(k->b) << 1) | carry;
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
if (carry)
h[1] ^= 0xc200000000000000UL;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *inkey, unsigned int keylen)
{
struct ghash_key *key = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE)
return -EINVAL;
/* needed for the fallback */
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
ghash_reflect(key->h[0], &key->k);
if (static_branch_likely(&use_p64)) {
be128 h = key->k;
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h[1], &h);
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h[2], &h);
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h[3], &h);
}
return 0;
}
static struct shash_alg ghash_alg = {
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
.base.cra_name = "ghash",
.base.cra_driver_name = "ghash-ce-sync",
.base.cra_priority = 300 - 1,
.base.cra_blocksize = GHASH_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
.base.cra_module = THIS_MODULE,
};
static int ghash_async_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
desc->tfm = child;
return crypto_shash_init(desc);
}
static int ghash_async_update(struct ahash_request *req)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_update(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
return shash_ahash_update(req, desc);
}
}
static int ghash_async_final(struct ahash_request *req)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_final(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
return crypto_shash_final(desc, req->result);
}
}
static int ghash_async_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_digest(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
desc->tfm = child;
return shash_ahash_digest(req, desc);
}
}
static int ghash_async_import(struct ahash_request *req, const void *in)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);
return crypto_shash_import(desc, in);
}
static int ghash_async_export(struct ahash_request *req, void *out)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
return crypto_shash_export(desc, out);
}
static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct crypto_ahash *child = &ctx->cryptd_tfm->base;
crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
& CRYPTO_TFM_REQ_MASK);
return crypto_ahash_setkey(child, key, keylen);
}
static int ghash_async_init_tfm(struct crypto_tfm *tfm)
{
struct cryptd_ahash *cryptd_tfm;
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_request) +
crypto_ahash_reqsize(&cryptd_tfm->base));
return 0;
}
static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
{
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
cryptd_free_ahash(ctx->cryptd_tfm);
}
static struct ahash_alg ghash_async_alg = {
.init = ghash_async_init,
.update = ghash_async_update,
.final = ghash_async_final,
.setkey = ghash_async_setkey,
.digest = ghash_async_digest,
.import = ghash_async_import,
.export = ghash_async_export,
.halg.digestsize = GHASH_DIGEST_SIZE,
.halg.statesize = sizeof(struct ghash_desc_ctx),
.halg.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-ce",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = ghash_async_init_tfm,
.cra_exit = ghash_async_exit_tfm,
},
};
void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
struct gcm_key const *k, char *dst,
const char *iv, int rounds, u32 counter);
void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
struct gcm_key const *k, char *head,
const char *iv, int rounds, u32 counter);
void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
struct gcm_key const *k, char *dst,
const char *iv, int rounds, u32 counter);
int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
struct gcm_key const *k, char *head,
const char *iv, int rounds, u32 counter,
const char *otag, int authsize);
static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_key *ctx = crypto_aead_ctx(tfm);
struct crypto_aes_ctx aes_ctx;
be128 h, k;
int ret;
ret = aes_expandkey(&aes_ctx, inkey, keylen);
if (ret)
return -EINVAL;
aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});
memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
ctx->rounds = 6 + keylen / 4;
memzero_explicit(&aes_ctx, sizeof(aes_ctx));
ghash_reflect(ctx->h[0], &k);
h = k;
gf128mul_lle(&h, &k);
ghash_reflect(ctx->h[1], &h);
gf128mul_lle(&h, &k);
ghash_reflect(ctx->h[2], &h);
gf128mul_lle(&h, &k);
ghash_reflect(ctx->h[3], &h);
return 0;
}
static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
int *buf_count, struct gcm_key *ctx)
{
if (*buf_count > 0) {
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
memcpy(&buf[*buf_count], src, buf_added);
*buf_count += buf_added;
src += buf_added;
count -= buf_added;
}
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
int blocks = count / GHASH_BLOCK_SIZE;
pmull_ghash_update_p64(blocks, dg, src, ctx->h,
*buf_count ? buf : NULL);
src += blocks * GHASH_BLOCK_SIZE;
count %= GHASH_BLOCK_SIZE;
*buf_count = 0;
}
if (count > 0) {
memcpy(buf, src, count);
*buf_count = count;
}
}
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_key *ctx = crypto_aead_ctx(aead);
u8 buf[GHASH_BLOCK_SIZE];
struct scatter_walk walk;
int buf_count = 0;
scatterwalk_start(&walk, req->src);
do {
u32 n = scatterwalk_clamp(&walk, len);
u8 *p;
if (!n) {
scatterwalk_start(&walk, sg_next(walk.sg));
n = scatterwalk_clamp(&walk, len);
}
p = scatterwalk_map(&walk);
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
scatterwalk_unmap(p);
if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
kernel_neon_end();
kernel_neon_begin();
}
len -= n;
scatterwalk_advance(&walk, n);
scatterwalk_done(&walk, 0, len);
} while (len);
if (buf_count) {
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
}
}
static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_key *ctx = crypto_aead_ctx(aead);
struct skcipher_walk walk;
u8 buf[AES_BLOCK_SIZE];
u32 counter = 2;
u64 dg[2] = {};
be128 lengths;
const u8 *src;
u8 *tag, *dst;
int tail, err;
if (WARN_ON_ONCE(!may_use_simd()))
return -EBUSY;
err = skcipher_walk_aead_encrypt(&walk, req, false);
kernel_neon_begin();
if (assoclen)
gcm_calculate_auth_mac(req, dg, assoclen);
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
while (walk.nbytes >= AES_BLOCK_SIZE) {
int nblocks = walk.nbytes / AES_BLOCK_SIZE;
pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
ctx->rounds, counter);
counter += nblocks;
if (walk.nbytes == walk.total) {
src += nblocks * AES_BLOCK_SIZE;
dst += nblocks * AES_BLOCK_SIZE;
break;
}
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
if (err)
return err;
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
kernel_neon_begin();
}
lengths.a = cpu_to_be64(assoclen * 8);
lengths.b = cpu_to_be64(req->cryptlen * 8);
tag = (u8 *)&lengths;
tail = walk.nbytes % AES_BLOCK_SIZE;
/*
* Bounce via a buffer unless we are encrypting in place and src/dst
* are not pointing to the start of the walk buffer. In that case, we
* can do a NEON load/xor/store sequence in place as long as we move
* the plain/ciphertext and keystream to the start of the register. If
* not, do a memcpy() to the end of the buffer so we can reuse the same
* logic.
*/
if (unlikely(tail && (tail == walk.nbytes || src != dst)))
src = memcpy(buf + sizeof(buf) - tail, src, tail);
pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
ctx->rounds, counter);
kernel_neon_end();
if (unlikely(tail && src != dst))
memcpy(dst, src, tail);
if (walk.nbytes) {
err = skcipher_walk_done(&walk, 0);
if (err)
return err;
}
/* copy authtag to end of dst */
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
crypto_aead_authsize(aead), 1);
return 0;
}
static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_key *ctx = crypto_aead_ctx(aead);
int authsize = crypto_aead_authsize(aead);
struct skcipher_walk walk;
u8 otag[AES_BLOCK_SIZE];
u8 buf[AES_BLOCK_SIZE];
u32 counter = 2;
u64 dg[2] = {};
be128 lengths;
const u8 *src;
u8 *tag, *dst;
int tail, err, ret;
if (WARN_ON_ONCE(!may_use_simd()))
return -EBUSY;
scatterwalk_map_and_copy(otag, req->src,
req->assoclen + req->cryptlen - authsize,
authsize, 0);
err = skcipher_walk_aead_decrypt(&walk, req, false);
kernel_neon_begin();
if (assoclen)
gcm_calculate_auth_mac(req, dg, assoclen);
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
while (walk.nbytes >= AES_BLOCK_SIZE) {
int nblocks = walk.nbytes / AES_BLOCK_SIZE;
pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
ctx->rounds, counter);
counter += nblocks;
if (walk.nbytes == walk.total) {
src += nblocks * AES_BLOCK_SIZE;
dst += nblocks * AES_BLOCK_SIZE;
break;
}
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
if (err)
return err;
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
kernel_neon_begin();
}
lengths.a = cpu_to_be64(assoclen * 8);
lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
tag = (u8 *)&lengths;
tail = walk.nbytes % AES_BLOCK_SIZE;
if (unlikely(tail && (tail == walk.nbytes || src != dst)))
src = memcpy(buf + sizeof(buf) - tail, src, tail);
ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
ctx->rounds, counter, otag, authsize);
kernel_neon_end();
if (unlikely(tail && src != dst))
memcpy(dst, src, tail);
if (walk.nbytes) {
err = skcipher_walk_done(&walk, 0);
if (err)
return err;
}
return ret ? -EBADMSG : 0;
}
static int gcm_aes_encrypt(struct aead_request *req)
{
return gcm_encrypt(req, req->iv, req->assoclen);
}
static int gcm_aes_decrypt(struct aead_request *req)
{
return gcm_decrypt(req, req->iv, req->assoclen);
}
static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_key *ctx = crypto_aead_ctx(tfm);
int err;
keylen -= RFC4106_NONCE_SIZE;
err = gcm_aes_setkey(tfm, inkey, keylen);
if (err)
return err;
memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
return crypto_rfc4106_check_authsize(authsize);
}
static int rfc4106_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_key *ctx = crypto_aead_ctx(aead);
u8 iv[GCM_AES_IV_SIZE];
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}
static int rfc4106_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_key *ctx = crypto_aead_ctx(aead);
u8 iv[GCM_AES_IV_SIZE];
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}
static struct aead_alg gcm_aes_algs[] = {{
.ivsize = GCM_AES_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = gcm_aes_setkey,
.setauthsize = gcm_aes_setauthsize,
.encrypt = gcm_aes_encrypt,
.decrypt = gcm_aes_decrypt,
.base.cra_name = "gcm(aes)",
.base.cra_driver_name = "gcm-aes-ce",
.base.cra_priority = 400,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_key),
.base.cra_module = THIS_MODULE,
}, {
.ivsize = GCM_RFC4106_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = rfc4106_encrypt,
.decrypt = rfc4106_decrypt,
.base.cra_name = "rfc4106(gcm(aes))",
.base.cra_driver_name = "rfc4106-gcm-aes-ce",
.base.cra_priority = 400,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
.base.cra_module = THIS_MODULE,
}};
static int __init ghash_ce_mod_init(void)
{
int err;
if (!(elf_hwcap & HWCAP_NEON))
return -ENODEV;
if (elf_hwcap2 & HWCAP2_PMULL) {
err = crypto_register_aeads(gcm_aes_algs,
ARRAY_SIZE(gcm_aes_algs));
if (err)
return err;
ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
static_branch_enable(&use_p64);
}
err = crypto_register_shash(&ghash_alg);
if (err)
goto err_aead;
err = crypto_register_ahash(&ghash_async_alg);
if (err)
goto err_shash;
return 0;
err_shash:
crypto_unregister_shash(&ghash_alg);
err_aead:
if (elf_hwcap2 & HWCAP2_PMULL)
crypto_unregister_aeads(gcm_aes_algs,
ARRAY_SIZE(gcm_aes_algs));
return err;
}
static void __exit ghash_ce_mod_exit(void)
{
crypto_unregister_ahash(&ghash_async_alg);
crypto_unregister_shash(&ghash_alg);
if (elf_hwcap2 & HWCAP2_PMULL)
crypto_unregister_aeads(gcm_aes_algs,
ARRAY_SIZE(gcm_aes_algs));
}
module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);