/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Low-level CPU initialisation
* Based on arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (C) 2003-2012 ARM Ltd.
* Authors: Catalin Marinas <[email protected]>
* Will Deacon <[email protected]>
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/pgtable.h>
#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
#include <asm/bug.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>
#include "efi-header.S"
#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif
/*
* Kernel startup entry point.
* ---------------------------
*
* The requirements are:
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
efi_signature_nop // special NOP to identity as PE/COFF executable
b primary_entry // branch to kernel start, magic
.quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
.long .Lpe_header_offset // Offset to the PE header.
__EFI_PE_HEADER
.section ".idmap.text","a"
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x19 primary_entry() .. start_kernel() whether we entered with the MMU on
* x20 primary_entry() .. __primary_switch() CPU boot mode
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
*/
SYM_CODE_START(primary_entry)
bl record_mmu_state
bl preserve_boot_args
adrp x1, early_init_stack
mov sp, x1
mov x29, xzr
adrp x0, init_idmap_pg_dir
mov x1, xzr
bl __pi_create_init_idmap
/*
* If the page tables have been populated with non-cacheable
* accesses (MMU disabled), invalidate those tables again to
* remove any speculatively loaded cache lines.
*/
cbnz x19, 0f
dmb sy
mov x1, x0 // end of used region
adrp x0, init_idmap_pg_dir
adr_l x2, dcache_inval_poc
blr x2
b 1f
/*
* If we entered with the MMU and caches on, clean the ID mapped part
* of the primary boot code to the PoC so we can safely execute it with
* the MMU off.
*/
0: adrp x0, __idmap_text_start
adr_l x1, __idmap_text_end
adr_l x2, dcache_clean_poc
blr x2
1: mov x0, x19
bl init_kernel_el // w0=cpu_boot_mode
mov x20, x0
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
__INIT
SYM_CODE_START_LOCAL(record_mmu_state)
mrs x19, CurrentEL
cmp x19, #CurrentEL_EL2
mrs x19, sctlr_el1
b.ne 0f
mrs x19, sctlr_el2
0:
CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f )
CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f )
tst x19, #SCTLR_ELx_C // Z := (C == 0)
and x19, x19, #SCTLR_ELx_M // isolate M bit
csel x19, xzr, x19, eq // clear x19 if Z
ret
/*
* Set the correct endianness early so all memory accesses issued
* before init_kernel_el() occur in the correct byte order. Note that
* this means the MMU must be disabled, or the active ID map will end
* up getting interpreted with the wrong byte order.
*/
1: eor x19, x19, #SCTLR_ELx_EE
bic x19, x19, #SCTLR_ELx_M
b.ne 2f
pre_disable_mmu_workaround
msr sctlr_el2, x19
b 3f
2: pre_disable_mmu_workaround
msr sctlr_el1, x19
3: isb
mov x19, xzr
ret
SYM_CODE_END(record_mmu_state)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
b dcache_inval_poc // tail call
0: str_l x19, mmu_enabled_at_boot, x0
ret
SYM_CODE_END(preserve_boot_args)
/*
* Initialize CPU registers with task-specific and cpu-specific context.
*
* Create a final frame record at task_pt_regs(current)->stackframe, so
* that the unwinder can identify the final frame record of any task by
* its location in the task stack. We reserve the entire pt_regs space
* for consistency with user tasks and kthreads.
*/
.macro init_cpu_task tsk, tmp1, tmp2
msr sp_el0, \tsk
ldr \tmp1, [\tsk, #TSK_STACK]
add sp, \tmp1, #THREAD_SIZE
sub sp, sp, #PT_REGS_SIZE
stp xzr, xzr, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
scs_load_current
adr_l \tmp1, __per_cpu_offset
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
ldr \tmp1, [\tmp1, \tmp2, lsl #3]
set_this_cpu_offset \tmp1
.endm
/*
* The following fragment of code is executed with the MMU enabled.
*
* x0 = __pa(KERNEL_START)
*/
SYM_FUNC_START_LOCAL(__primary_switched)
adr_l x4, init_task
init_cpu_task x4, x5, x6
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp x29, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
adrp x4, _text // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
mov x0, x20
bl set_cpu_boot_mode_flag
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
mov x0, x20
bl finalise_el2 // Prefer VHE if possible
ldp x29, x30, [sp], #16
bl start_kernel
ASM_BUG()
SYM_FUNC_END(__primary_switched)
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
.section ".idmap.text","a"
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
* reachable EL supported by the kernel in a chosen default state. If dropping
* from EL2 to EL1, configure EL2 before configuring EL1.
*
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
*
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
* booted in EL1 or EL2 respectively, with the top 32 bits containing
* potential context flags. These flags are *not* stored in __boot_cpu_mode.
*
* x0: whether we are being called from the primary boot path with the MMU on
*/
SYM_FUNC_START(init_kernel_el)
mrs x1, CurrentEL
cmp x1, #CurrentEL_EL2
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
pre_disable_mmu_workaround
msr sctlr_el1, x0
isb
mov_q x0, INIT_PSTATE_EL1
msr spsr_el1, x0
msr elr_el1, lr
mov w0, #BOOT_CPU_MODE_EL1
eret
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
msr elr_el2, lr
// clean all HYP code to the PoC if we booted at EL2 with the MMU on
cbz x0, 0f
adrp x0, __hyp_idmap_text_start
adr_l x1, __hyp_text_end
adr_l x2, dcache_clean_poc
blr x2
mov_q x0, INIT_SCTLR_EL2_MMU_OFF
pre_disable_mmu_workaround
msr sctlr_el2, x0
isb
0:
mov_q x0, HCR_HOST_NVHE_FLAGS
/*
* Compliant CPUs advertise their VHE-onlyness with
* ID_AA64MMFR4_EL1.E2H0 < 0. HCR_EL2.E2H can be
* RES1 in that case. Publish the E2H bit early so that
* it can be picked up by the init_el2_state macro.
*
* Fruity CPUs seem to have HCR_EL2.E2H set to RAO/WI, but
* don't advertise it (they predate this relaxation).
*/
mrs_s x1, SYS_ID_AA64MMFR4_EL1
tbz x1, #(ID_AA64MMFR4_EL1_E2H0_SHIFT + ID_AA64MMFR4_EL1_E2H0_WIDTH - 1), 1f
orr x0, x0, #HCR_E2H
1:
msr hcr_el2, x0
isb
init_el2_state
/* Hypervisor stub */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
isb
mov_q x1, INIT_SCTLR_EL1_MMU_OFF
mrs x0, hcr_el2
and x0, x0, #HCR_E2H
cbz x0, 2f
/* Set a sane SCTLR_EL1, the VHE way */
msr_s SYS_SCTLR_EL12, x1
mov x2, #BOOT_CPU_FLAG_E2H
b 3f
2:
msr sctlr_el1, x1
mov x2, xzr
3:
__init_el2_nvhe_prepare_eret
mov w0, #BOOT_CPU_MODE_EL2
orr x0, x0, x2
eret
SYM_FUNC_END(init_kernel_el)
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
and x2, x2, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
cmp x4, x2
b.eq secondary_startup
wfe
b pen
SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
SYM_FUNC_END(secondary_entry)
SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
mov x20, x0 // preserve boot mode
#ifdef CONFIG_ARM64_VA_BITS_52
alternative_if ARM64_HAS_VA52
bl __cpu_secondary_check52bitva
alternative_else_nop_endif
#endif
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
adrp x2, idmap_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
SYM_FUNC_END(secondary_startup)
.text
SYM_FUNC_START_LOCAL(__secondary_switched)
mov x0, x20
bl set_cpu_boot_mode_flag
mov x0, x20
bl finalise_el2
str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
isb
adr_l x0, secondary_data
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
init_cpu_task x2, x1, x3
#ifdef CONFIG_ARM64_PTR_AUTH
ptrauth_keys_init_cpu x2, x3, x4, x5
#endif
bl secondary_start_kernel
ASM_BUG()
SYM_FUNC_END(__secondary_switched)
SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)
/*
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
* in w0. See arch/arm64/include/asm/virt.h for more info.
*/
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
adr_l x1, __boot_cpu_mode
cmp w0, #BOOT_CPU_MODE_EL2
b.ne 1f
add x1, x1, #4
1: str w0, [x1] // Save CPU boot mode
ret
SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
* update_early_cpu_boot_status tmp, status
* - Corrupts tmp1, tmp2
* - Writes 'status' to __early_cpu_boot_status and makes sure
* it is committed to memory.
*/
.macro update_early_cpu_boot_status status, tmp1, tmp2
mov \tmp2, #\status
adr_l \tmp1, __early_cpu_boot_status
str \tmp2, [\tmp1]
dmb sy
dc ivac, \tmp1 // Invalidate potentially stale cache line
.endm
/*
* Enable the MMU.
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
* x2 = ID map root table address
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
*
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
.section ".idmap.text","a"
SYM_FUNC_START(__enable_mmu)
mrs x3, ID_AA64MMFR0_EL1
ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
load_ttbr1 x1, x1, x3
set_sctlr_el1 x0
ret
SYM_FUNC_END(__enable_mmu)
#ifdef CONFIG_ARM64_VA_BITS_52
SYM_FUNC_START(__cpu_secondary_check52bitva)
#ifndef CONFIG_ARM64_LPA2
mrs_s x0, SYS_ID_AA64MMFR2_EL1
and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK
cbnz x0, 2f
#else
mrs x0, id_aa64mmfr0_el1
sbfx x0, x0, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
cmp x0, #ID_AA64MMFR0_EL1_TGRAN_LPA2
b.ge 2f
#endif
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1: wfe
wfi
b 1b
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
#endif
SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
1:
wfe
wfi
b 1b
SYM_FUNC_END(__no_granule_support)
SYM_FUNC_START_LOCAL(__primary_switch)
adrp x1, reserved_pg_dir
adrp x2, init_idmap_pg_dir
bl __enable_mmu
adrp x1, early_init_stack
mov sp, x1
mov x29, xzr
mov x0, x20 // pass the full boot status
mov x1, x21 // pass the FDT
bl __pi_early_map_kernel // Map and relocate the kernel
ldr x8, =__primary_switched
adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8
SYM_FUNC_END(__primary_switch)