// SPDX-License-Identifier: GPL-2.0-only
/*
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
* No bombay mix was harmed in the writing of this file.
*
* Copyright (C) 2020 Google LLC
* Author: Will Deacon <[email protected]>
*/
#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>
#define KVM_PTE_TYPE BIT(1)
#define KVM_PTE_TYPE_BLOCK 0
#define KVM_PTE_TYPE_PAGE 1
#define KVM_PTE_TYPE_TABLE 1
#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
KVM_PTE_LEAF_ATTR_HI_S2_XN)
#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
#define KVM_MAX_OWNER_ID 1
/*
* Used to indicate a pte for which a 'break-before-make' sequence is in
* progress.
*/
#define KVM_INVALID_PTE_LOCKED BIT(10)
struct kvm_pgtable_walk_data {
struct kvm_pgtable_walker *walker;
const u64 start;
u64 addr;
const u64 end;
};
static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
{
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
}
static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
{
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
}
static bool kvm_phys_is_valid(u64 phys)
{
u64 parange_max = kvm_get_parange_max();
u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
return phys < BIT(shift);
}
static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
{
u64 granule = kvm_granule_size(ctx->level);
if (!kvm_level_supports_block_mapping(ctx->level))
return false;
if (granule > (ctx->end - ctx->addr))
return false;
if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
return false;
return IS_ALIGNED(ctx->addr, granule);
}
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
{
u64 shift = kvm_granule_shift(level);
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
return (data->addr >> shift) & mask;
}
static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
u64 mask = BIT(pgt->ia_bits) - 1;
return (addr & mask) >> shift;
}
static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
{
struct kvm_pgtable pgt = {
.ia_bits = ia_bits,
.start_level = start_level,
};
return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}
static bool kvm_pte_table(kvm_pte_t pte, s8 level)
{
if (level == KVM_PGTABLE_LAST_LEVEL)
return false;
if (!kvm_pte_valid(pte))
return false;
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
{
return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
}
static void kvm_clear_pte(kvm_pte_t *ptep)
{
WRITE_ONCE(*ptep, 0);
}
static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
{
kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
pte |= KVM_PTE_VALID;
return pte;
}
static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
{
kvm_pte_t pte = kvm_phys_to_pte(pa);
u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
KVM_PTE_TYPE_BLOCK;
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
pte |= KVM_PTE_VALID;
return pte;
}
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
{
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_walker *walker = data->walker;
/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
return walker->cb(ctx, visit);
}
static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
int r)
{
/*
* Visitor callbacks return EAGAIN when the conditions that led to a
* fault are no longer reflected in the page tables due to a race to
* update a PTE. In the context of a fault handler this is interpreted
* as a signal to retry guest execution.
*
* Ignore the return code altogether for walkers outside a fault handler
* (e.g. write protecting a range of memory) and chug along with the
* page table walk.
*/
if (r == -EAGAIN)
return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
return !r;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops,
kvm_pteref_t pteref, s8 level)
{
enum kvm_pgtable_walk_flags flags = data->walker->flags;
kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
struct kvm_pgtable_visit_ctx ctx = {
.ptep = ptep,
.old = READ_ONCE(*ptep),
.arg = data->walker->arg,
.mm_ops = mm_ops,
.start = data->start,
.addr = data->addr,
.end = data->end,
.level = level,
.flags = flags,
};
int ret = 0;
bool reload = false;
kvm_pteref_t childp;
bool table = kvm_pte_table(ctx.old, level);
if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
reload = true;
}
if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
reload = true;
}
/*
* Reload the page table after invoking the walker callback for leaf
* entries or after pre-order traversal, to allow the walker to descend
* into a newly installed or replaced table.
*/
if (reload) {
ctx.old = READ_ONCE(*ptep);
table = kvm_pte_table(ctx.old, level);
}
if (!kvm_pgtable_walk_continue(data->walker, ret))
goto out;
if (!table) {
data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
data->addr += kvm_granule_size(level);
goto out;
}
childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
if (!kvm_pgtable_walk_continue(data->walker, ret))
goto out;
if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
out:
if (kvm_pgtable_walk_continue(data->walker, ret))
return 0;
return ret;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
{
u32 idx;
int ret = 0;
if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
level > KVM_PGTABLE_LAST_LEVEL))
return -EINVAL;
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
kvm_pteref_t pteref = &pgtable[idx];
if (data->addr >= data->end)
break;
ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
if (ret)
break;
}
return ret;
}
static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
{
u32 idx;
int ret = 0;
u64 limit = BIT(pgt->ia_bits);
if (data->addr > limit || data->end > limit)
return -ERANGE;
if (!pgt->pgd)
return -EINVAL;
for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
if (ret)
break;
}
return ret;
}
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_pgtable_walker *walker)
{
struct kvm_pgtable_walk_data walk_data = {
.start = ALIGN_DOWN(addr, PAGE_SIZE),
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
.end = PAGE_ALIGN(walk_data.addr + size),
.walker = walker,
};
int r;
r = kvm_pgtable_walk_begin(walker);
if (r)
return r;
r = _kvm_pgtable_walk(pgt, &walk_data);
kvm_pgtable_walk_end(walker);
return r;
}
struct leaf_walk_data {
kvm_pte_t pte;
s8 level;
};
static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct leaf_walk_data *data = ctx->arg;
data->pte = ctx->old;
data->level = ctx->level;
return 0;
}
int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
kvm_pte_t *ptep, s8 *level)
{
struct leaf_walk_data data;
struct kvm_pgtable_walker walker = {
.cb = leaf_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &data,
};
int ret;
ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
PAGE_SIZE, &walker);
if (!ret) {
if (ptep)
*ptep = data.pte;
if (level)
*level = data.level;
}
return ret;
}
struct hyp_map_data {
const u64 phys;
kvm_pte_t attr;
};
static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
if (!(prot & KVM_PGTABLE_PROT_R))
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_X) {
if (prot & KVM_PGTABLE_PROT_W)
return -EINVAL;
if (device)
return -EINVAL;
if (system_supports_bti_kernel())
attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
} else {
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
}
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
if (!kvm_lpa2_is_enabled())
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
u32 ap;
if (!kvm_pte_valid(pte))
return prot;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
prot |= KVM_PGTABLE_PROT_X;
ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
prot |= KVM_PGTABLE_PROT_R;
else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
prot |= KVM_PGTABLE_PROT_RW;
return prot;
}
static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct hyp_map_data *data)
{
u64 phys = data->phys + (ctx->addr - ctx->start);
kvm_pte_t new;
if (!kvm_block_mapping_supported(ctx, phys))
return false;
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
if (ctx->old == new)
return true;
if (!kvm_pte_valid(ctx->old))
ctx->mm_ops->get_page(ctx->ptep);
else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
return false;
smp_store_release(ctx->ptep, new);
return true;
}
static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t *childp, new;
struct hyp_map_data *data = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (hyp_map_walker_try_leaf(ctx, data))
return 0;
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
return -EINVAL;
childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
if (!childp)
return -ENOMEM;
new = kvm_init_table_pte(childp, mm_ops);
mm_ops->get_page(ctx->ptep);
smp_store_release(ctx->ptep, new);
return 0;
}
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
enum kvm_pgtable_prot prot)
{
int ret;
struct hyp_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
};
struct kvm_pgtable_walker walker = {
.cb = hyp_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
ret = hyp_set_prot_attr(prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
isb();
return ret;
}
static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t *childp = NULL;
u64 granule = kvm_granule_size(ctx->level);
u64 *unmapped = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return -EINVAL;
if (kvm_pte_table(ctx->old, ctx->level)) {
childp = kvm_pte_follow(ctx->old, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
kvm_clear_pte(ctx->ptep);
dsb(ishst);
__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
} else {
if (ctx->end - ctx->addr < granule)
return -EINVAL;
kvm_clear_pte(ctx->ptep);
dsb(ishst);
__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
*unmapped += granule;
}
dsb(ish);
isb();
mm_ops->put_page(ctx->ptep);
if (childp)
mm_ops->put_page(childp);
return 0;
}
u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
u64 unmapped = 0;
struct kvm_pgtable_walker walker = {
.cb = hyp_unmap_walker,
.arg = &unmapped,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
if (!pgt->mm_ops->page_count)
return 0;
kvm_pgtable_walk(pgt, addr, size, &walker);
return unmapped;
}
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
struct kvm_pgtable_mm_ops *mm_ops)
{
s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
ARM64_HW_PGTABLE_LEVELS(va_bits);
if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
start_level > KVM_PGTABLE_LAST_LEVEL)
return -EINVAL;
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = va_bits;
pgt->start_level = start_level;
pgt->mm_ops = mm_ops;
pgt->mmu = NULL;
pgt->force_pte_cb = NULL;
return 0;
}
static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return 0;
mm_ops->put_page(ctx->ptep);
if (kvm_pte_table(ctx->old, ctx->level))
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
return 0;
}
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
struct kvm_pgtable_walker walker = {
.cb = hyp_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
pgt->pgd = NULL;
}
struct stage2_map_data {
const u64 phys;
kvm_pte_t attr;
u8 owner_id;
kvm_pte_t *anchor;
kvm_pte_t *childp;
struct kvm_s2_mmu *mmu;
void *memcache;
/* Force mappings to page granularity */
bool force_pte;
};
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
{
u64 vtcr = VTCR_EL2_FLAGS;
s8 lvls;
vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
vtcr |= VTCR_EL2_T0SZ(phys_shift);
/*
* Use a minimum 2 level page table to prevent splitting
* host PMD huge pages at stage2.
*/
lvls = stage2_pgtable_levels(phys_shift);
if (lvls < 2)
lvls = 2;
/*
* When LPA2 is enabled, the HW supports an extra level of translation
* (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
* to as an addition to SL0 to enable encoding this extra start level.
* However, since we always use concatenated pages for the first level
* lookup, we will never need this extra level and therefore do not need
* to touch SL2.
*/
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* Enable the Hardware Access Flag management, unconditionally
* on all CPUs. In systems that have asymmetric support for the feature
* this allows KVM to leverage hardware support on the subset of cores
* that implement the feature.
*
* The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
* hardware) on implementations that do not advertise support for the
* feature. As such, setting HA unconditionally is safe, unless you
* happen to be running on a design that has unadvertised support for
* HAFDBS. Here be dragons.
*/
if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
vtcr |= VTCR_EL2_HA;
#endif /* CONFIG_ARM64_HW_AFDBM */
if (kvm_lpa2_is_enabled())
vtcr |= VTCR_EL2_DS;
/* Set the vmid bits */
vtcr |= (get_vmid_bits(mmfr1) == 16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
return vtcr;
}
static bool stage2_has_fwb(struct kvm_pgtable *pgt)
{
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
return false;
return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
}
void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
phys_addr_t addr, size_t size)
{
unsigned long pages, inval_pages;
if (!system_supports_tlb_range()) {
kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
return;
}
pages = size >> PAGE_SHIFT;
while (pages > 0) {
inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
addr += inval_pages << PAGE_SHIFT;
pages -= inval_pages;
}
}
#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
kvm_pte_t *ptep)
{
kvm_pte_t attr;
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
switch (prot & (KVM_PGTABLE_PROT_DEVICE |
KVM_PGTABLE_PROT_NORMAL_NC)) {
case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
return -EINVAL;
case KVM_PGTABLE_PROT_DEVICE:
if (prot & KVM_PGTABLE_PROT_X)
return -EINVAL;
attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
break;
case KVM_PGTABLE_PROT_NORMAL_NC:
if (prot & KVM_PGTABLE_PROT_X)
return -EINVAL;
attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
break;
default:
attr = KVM_S2_MEMATTR(pgt, NORMAL);
}
if (!(prot & KVM_PGTABLE_PROT_X))
attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
if (prot & KVM_PGTABLE_PROT_R)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
if (!kvm_lpa2_is_enabled())
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
if (!kvm_pte_valid(pte))
return prot;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
prot |= KVM_PGTABLE_PROT_R;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
prot |= KVM_PGTABLE_PROT_W;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
prot |= KVM_PGTABLE_PROT_X;
return prot;
}
static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
{
if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
return true;
return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
}
static bool stage2_pte_is_counted(kvm_pte_t pte)
{
/*
* The refcount tracks valid entries as well as invalid entries if they
* encode ownership of a page to another entity than the page-table
* owner, whose id is 0.
*/
return !!pte;
}
static bool stage2_pte_is_locked(kvm_pte_t pte)
{
return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
}
static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
if (!kvm_pgtable_walk_shared(ctx)) {
WRITE_ONCE(*ctx->ptep, new);
return true;
}
return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
}
/**
* stage2_try_break_pte() - Invalidates a pte according to the
* 'break-before-make' requirements of the
* architecture.
*
* @ctx: context of the visited pte.
* @mmu: stage-2 mmu
*
* Returns: true if the pte was successfully broken.
*
* If the removed pte was valid, performs the necessary serialization and TLB
* invalidation for the old value. For counted ptes, drops the reference count
* on the containing table page.
*/
static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
struct kvm_s2_mmu *mmu)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (stage2_pte_is_locked(ctx->old)) {
/*
* Should never occur if this walker has exclusive access to the
* page tables.
*/
WARN_ON(!kvm_pgtable_walk_shared(ctx));
return false;
}
if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
return false;
if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
/*
* Perform the appropriate TLB invalidation based on the
* evicted pte value (if any).
*/
if (kvm_pte_table(ctx->old, ctx->level)) {
u64 size = kvm_granule_size(ctx->level);
u64 addr = ALIGN_DOWN(ctx->addr, size);
kvm_tlb_flush_vmid_range(mmu, addr, size);
} else if (kvm_pte_valid(ctx->old)) {
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
ctx->addr, ctx->level);
}
}
if (stage2_pte_is_counted(ctx->old))
mm_ops->put_page(ctx->ptep);
return true;
}
static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
if (stage2_pte_is_counted(new))
mm_ops->get_page(ctx->ptep);
smp_store_release(ctx->ptep, new);
}
static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
{
/*
* If FEAT_TLBIRANGE is implemented, defer the individual
* TLB invalidations until the entire walk is finished, and
* then use the range-based TLBI instructions to do the
* invalidations. Condition deferred TLB invalidation on the
* system supporting FWB as the optimization is entirely
* pointless when the unmap walker needs to perform CMOs.
*/
return system_supports_tlb_range() && stage2_has_fwb(pgt);
}
static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops)
{
struct kvm_pgtable *pgt = ctx->arg;
/*
* Clear the existing PTE, and perform break-before-make if it was
* valid. Depending on the system support, defer the TLB maintenance
* for the same until the entire unmap walk is completed.
*/
if (kvm_pte_valid(ctx->old)) {
kvm_clear_pte(ctx->ptep);
if (kvm_pte_table(ctx->old, ctx->level)) {
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
TLBI_TTL_UNKNOWN);
} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
ctx->level);
}
}
mm_ops->put_page(ctx->ptep);
}
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
{
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
}
static bool stage2_pte_executable(kvm_pte_t pte)
{
return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
}
static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
const struct stage2_map_data *data)
{
u64 phys = data->phys;
/*
* Stage-2 walks to update ownership data are communicated to the map
* walker using an invalid PA. Avoid offsetting an already invalid PA,
* which could overflow and make the address valid again.
*/
if (!kvm_phys_is_valid(phys))
return phys;
/*
* Otherwise, work out the correct PA based on how far the walk has
* gotten.
*/
return phys + (ctx->addr - ctx->start);
}
static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
u64 phys = stage2_map_walker_phys_addr(ctx, data);
if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
return false;
return kvm_block_mapping_supported(ctx, phys);
}
static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
kvm_pte_t new;
u64 phys = stage2_map_walker_phys_addr(ctx, data);
u64 granule = kvm_granule_size(ctx->level);
struct kvm_pgtable *pgt = data->mmu->pgt;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!stage2_leaf_mapping_allowed(ctx, data))
return -E2BIG;
if (kvm_phys_is_valid(phys))
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
else
new = kvm_init_invalid_leaf_owner(data->owner_id);
/*
* Skip updating the PTE if we are trying to recreate the exact
* same mapping or only change the access permissions. Instead,
* the vCPU will exit one more time from guest if still needed
* and then go through the path of relaxing permissions.
*/
if (!stage2_pte_needs_update(ctx->old, new))
return -EAGAIN;
/* If we're only changing software bits, then store them and go! */
if (!kvm_pgtable_walk_shared(ctx) &&
!((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
bool old_is_counted = stage2_pte_is_counted(ctx->old);
if (old_is_counted != stage2_pte_is_counted(new)) {
if (old_is_counted)
mm_ops->put_page(ctx->ptep);
else
mm_ops->get_page(ctx->ptep);
}
WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
return 0;
}
if (!stage2_try_break_pte(ctx, data->mmu))
return -EAGAIN;
/* Perform CMOs before installation of the guest stage-2 PTE */
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
stage2_pte_cacheable(pgt, new))
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
granule);
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
stage2_pte_executable(new))
mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
stage2_make_pte(ctx, new);
return 0;
}
static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
int ret;
if (!stage2_leaf_mapping_allowed(ctx, data))
return 0;
ret = stage2_map_walker_try_leaf(ctx, data);
if (ret)
return ret;
mm_ops->free_unlinked_table(childp, ctx->level);
return 0;
}
static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp, new;
int ret;
ret = stage2_map_walker_try_leaf(ctx, data);
if (ret != -E2BIG)
return ret;
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
return -EINVAL;
if (!data->memcache)
return -ENOMEM;
childp = mm_ops->zalloc_page(data->memcache);
if (!childp)
return -ENOMEM;
if (!stage2_try_break_pte(ctx, data->mmu)) {
mm_ops->put_page(childp);
return -EAGAIN;
}
/*
* If we've run into an existing block mapping then replace it with
* a table. Accesses beyond 'end' that fall within the new table
* will be mapped lazily.
*/
new = kvm_init_table_pte(childp, mm_ops);
stage2_make_pte(ctx, new);
return 0;
}
/*
* The TABLE_PRE callback runs for table entries on the way down, looking
* for table entries which we could conceivably replace with a block entry
* for this mapping. If it finds one it replaces the entry and calls
* kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
*
* Otherwise, the LEAF callback performs the mapping at the existing leaves
* instead.
*/
static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct stage2_map_data *data = ctx->arg;
switch (visit) {
case KVM_PGTABLE_WALK_TABLE_PRE:
return stage2_map_walk_table_pre(ctx, data);
case KVM_PGTABLE_WALK_LEAF:
return stage2_map_walk_leaf(ctx, data);
default:
return -EINVAL;
}
}
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
void *mc, enum kvm_pgtable_walk_flags flags)
{
int ret;
struct stage2_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
.mmu = pgt->mmu,
.memcache = mc,
.force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = flags |
KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
return -EINVAL;
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
return ret;
}
int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
void *mc, u8 owner_id)
{
int ret;
struct stage2_map_data map_data = {
.phys = KVM_PHYS_INVALID,
.mmu = pgt->mmu,
.memcache = mc,
.owner_id = owner_id,
.force_pte = true,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
if (owner_id > KVM_MAX_OWNER_ID)
return -EINVAL;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
return ret;
}
static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable *pgt = ctx->arg;
struct kvm_s2_mmu *mmu = pgt->mmu;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp = NULL;
bool need_flush = false;
if (!kvm_pte_valid(ctx->old)) {
if (stage2_pte_is_counted(ctx->old)) {
kvm_clear_pte(ctx->ptep);
mm_ops->put_page(ctx->ptep);
}
return 0;
}
if (kvm_pte_table(ctx->old, ctx->level)) {
childp = kvm_pte_follow(ctx->old, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
} else if (stage2_pte_cacheable(pgt, ctx->old)) {
need_flush = !stage2_has_fwb(pgt);
}
/*
* This is similar to the map() path in that we unmap the entire
* block entry and rely on the remaining portions being faulted
* back lazily.
*/
stage2_unmap_put_pte(ctx, mmu, mm_ops);
if (need_flush && mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
kvm_granule_size(ctx->level));
if (childp)
mm_ops->put_page(childp);
return 0;
}
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
int ret;
struct kvm_pgtable_walker walker = {
.cb = stage2_unmap_walker,
.arg = pgt,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (stage2_unmap_defer_tlb_flush(pgt))
/* Perform the deferred TLB invalidations */
kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
return ret;
}
struct stage2_attr_data {
kvm_pte_t attr_set;
kvm_pte_t attr_clr;
kvm_pte_t pte;
s8 level;
};
static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t pte = ctx->old;
struct stage2_attr_data *data = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return -EAGAIN;
data->level = ctx->level;
data->pte = pte;
pte &= ~data->attr_clr;
pte |= data->attr_set;
/*
* We may race with the CPU trying to set the access flag here,
* but worst-case the access flag update gets lost and will be
* set on the next access instead.
*/
if (data->pte != pte) {
/*
* Invalidate instruction cache before updating the guest
* stage-2 PTE if we are going to add executable permission.
*/
if (mm_ops->icache_inval_pou &&
stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
kvm_granule_size(ctx->level));
if (!stage2_try_set_pte(ctx, pte))
return -EAGAIN;
}
return 0;
}
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
u64 size, kvm_pte_t attr_set,
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
s8 *level, enum kvm_pgtable_walk_flags flags)
{
int ret;
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
struct stage2_attr_data data = {
.attr_set = attr_set & attr_mask,
.attr_clr = attr_clr & attr_mask,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_attr_walker,
.arg = &data,
.flags = flags | KVM_PGTABLE_WALK_LEAF,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (ret)
return ret;
if (orig_pte)
*orig_pte = data.pte;
if (level)
*level = data.level;
return 0;
}
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
return stage2_update_leaf_attrs(pgt, addr, size, 0,
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
NULL, NULL, 0);
}
kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
int ret;
ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
&pte, NULL,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
if (!ret)
dsb(ishst);
return pte;
}
struct stage2_age_data {
bool mkold;
bool young;
};
static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
struct stage2_age_data *data = ctx->arg;
if (!kvm_pte_valid(ctx->old) || new == ctx->old)
return 0;
data->young = true;
/*
* stage2_age_walker() is always called while holding the MMU lock for
* write, so this will always succeed. Nonetheless, this deliberately
* follows the race detection pattern of the other stage-2 walkers in
* case the locking mechanics of the MMU notifiers is ever changed.
*/
if (data->mkold && !stage2_try_set_pte(ctx, new))
return -EAGAIN;
/*
* "But where's the TLBI?!", you scream.
* "Over in the core code", I sigh.
*
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
*/
return 0;
}
bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
u64 size, bool mkold)
{
struct stage2_age_data data = {
.mkold = mkold,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_age_walker,
.arg = &data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
return data.young;
}
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
enum kvm_pgtable_prot prot)
{
int ret;
s8 level;
kvm_pte_t set = 0, clr = 0;
if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
if (prot & KVM_PGTABLE_PROT_X)
clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
if (!ret || ret == -EAGAIN)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
return ret;
}
static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable *pgt = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
if (!stage2_pte_cacheable(pgt, ctx->old))
return 0;
if (mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
kvm_granule_size(ctx->level));
return 0;
}
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_flush_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = pgt,
};
if (stage2_has_fwb(pgt))
return 0;
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
u64 phys, s8 level,
enum kvm_pgtable_prot prot,
void *mc, bool force_pte)
{
struct stage2_map_data map_data = {
.phys = phys,
.mmu = pgt->mmu,
.memcache = mc,
.force_pte = force_pte,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
KVM_PGTABLE_WALK_SKIP_CMO,
.arg = &map_data,
};
/*
* The input address (.addr) is irrelevant for walking an
* unlinked table. Construct an ambiguous IA range to map
* kvm_granule_size(level) worth of memory.
*/
struct kvm_pgtable_walk_data data = {
.walker = &walker,
.addr = 0,
.end = kvm_granule_size(level),
};
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
kvm_pte_t *pgtable;
int ret;
if (!IS_ALIGNED(phys, kvm_granule_size(level)))
return ERR_PTR(-EINVAL);
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
if (ret)
return ERR_PTR(ret);
pgtable = mm_ops->zalloc_page(mc);
if (!pgtable)
return ERR_PTR(-ENOMEM);
ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
level + 1);
if (ret) {
kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
return ERR_PTR(ret);
}
return pgtable;
}
/*
* Get the number of page-tables needed to replace a block with a
* fully populated tree up to the PTE entries. Note that @level is
* interpreted as in "level @level entry".
*/
static int stage2_block_get_nr_page_tables(s8 level)
{
switch (level) {
case 1:
return PTRS_PER_PTE + 1;
case 2:
return 1;
case 3:
return 0;
default:
WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
level > KVM_PGTABLE_LAST_LEVEL);
return -EINVAL;
};
}
static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
struct kvm_mmu_memory_cache *mc = ctx->arg;
struct kvm_s2_mmu *mmu;
kvm_pte_t pte = ctx->old, new, *childp;
enum kvm_pgtable_prot prot;
s8 level = ctx->level;
bool force_pte;
int nr_pages;
u64 phys;
/* No huge-pages exist at the last level */
if (level == KVM_PGTABLE_LAST_LEVEL)
return 0;
/* We only split valid block mappings */
if (!kvm_pte_valid(pte))
return 0;
nr_pages = stage2_block_get_nr_page_tables(level);
if (nr_pages < 0)
return nr_pages;
if (mc->nobjs >= nr_pages) {
/* Build a tree mapped down to the PTE granularity. */
force_pte = true;
} else {
/*
* Don't force PTEs, so create_unlinked() below does
* not populate the tree up to the PTE level. The
* consequence is that the call will require a single
* page of level 2 entries at level 1, or a single
* page of PTEs at level 2. If we are at level 1, the
* PTEs will be created recursively.
*/
force_pte = false;
nr_pages = 1;
}
if (mc->nobjs < nr_pages)
return -ENOMEM;
mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
phys = kvm_pte_to_phys(pte);
prot = kvm_pgtable_stage2_pte_prot(pte);
childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
level, prot, mc, force_pte);
if (IS_ERR(childp))
return PTR_ERR(childp);
if (!stage2_try_break_pte(ctx, mmu)) {
kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
return -EAGAIN;
}
/*
* Note, the contents of the page table are guaranteed to be made
* visible before the new PTE is assigned because stage2_make_pte()
* writes the PTE using smp_store_release().
*/
new = kvm_init_table_pte(childp, mm_ops);
stage2_make_pte(ctx, new);
dsb(ishst);
return 0;
}
int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_mmu_memory_cache *mc)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_split_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = mc,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops,
enum kvm_pgtable_stage2_flags flags,
kvm_pgtable_force_pte_cb_t force_pte_cb)
{
size_t pgd_sz;
u64 vtcr = mmu->vtcr;
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = ia_bits;
pgt->start_level = start_level;
pgt->mm_ops = mm_ops;
pgt->mmu = mmu;
pgt->flags = flags;
pgt->force_pte_cb = force_pte_cb;
/* Ensure zeroed PGD pages are visible to the hardware walker */
dsb(ishst);
return 0;
}
size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
{
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
}
static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!stage2_pte_is_counted(ctx->old))
return 0;
mm_ops->put_page(ctx->ptep);
if (kvm_pte_table(ctx->old, ctx->level))
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
return 0;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
size_t pgd_sz;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
pgt->pgd = NULL;
}
void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
{
kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
struct kvm_pgtable_walk_data data = {
.walker = &walker,
/*
* At this point the IPA really doesn't matter, as the page
* table being traversed has already been removed from the stage
* 2. Set an appropriate range to cover the entire page table.
*/
.addr = 0,
.end = kvm_granule_size(level),
};
WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
WARN_ON(mm_ops->page_count(pgtable) != 1);
mm_ops->put_page(pgtable);
}