linux/arch/arm64/kvm/hyp/include/hyp/switch.h

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <[email protected]>
 */

#ifndef __ARM64_KVM_HYP_SWITCH_H__
#define __ARM64_KVM_HYP_SWITCH_H__

#include <hyp/adjust_pc.h>
#include <hyp/fault.h>

#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>

#include <kvm/arm_psci.h>

#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/extable.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/kvm_ptrauth.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/traps.h>

struct kvm_exception_table_entry {
	int insn, fixup;
};

extern struct kvm_exception_table_entry __start___kvm_ex_table;
extern struct kvm_exception_table_entry __stop___kvm_ex_table;

/* Save the 32-bit only FPSIMD system register state */
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
}

static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

#define compute_clr_set(vcpu, reg, clr, set)				\
	do {								\
		u64 hfg;						\
		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
		set |= hfg & __ ## reg ## _MASK; 			\
		clr |= ~hfg & __ ## reg ## _nMASK; 			\
	} while(0)

#define reg_to_fgt_group_id(reg)					\
	({								\
		enum fgt_group_id id;					\
		switch(reg) {						\
		case HFGRTR_EL2:					\
		case HFGWTR_EL2:					\
			id = HFGxTR_GROUP;				\
			break;						\
		case HFGITR_EL2:					\
			id = HFGITR_GROUP;				\
			break;						\
		case HDFGRTR_EL2:					\
		case HDFGWTR_EL2:					\
			id = HDFGRTR_GROUP;				\
			break;						\
		case HAFGRTR_EL2:					\
			id = HAFGRTR_GROUP;				\
			break;						\
		default:						\
			BUILD_BUG_ON(1);				\
		}							\
									\
		id;							\
	})

#define compute_undef_clr_set(vcpu, kvm, reg, clr, set)			\
	do {								\
		u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)];	\
		set |= hfg & __ ## reg ## _MASK;			\
		clr |= hfg & __ ## reg ## _nMASK; 			\
	} while(0)

#define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set)		\
	do {								\
		u64 c = 0, s = 0;					\
									\
		ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);	\
		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))		\
			compute_clr_set(vcpu, reg, c, s);		\
									\
		compute_undef_clr_set(vcpu, kvm, reg, c, s);		\
									\
		s |= set;						\
		c |= clr;						\
		if (c || s) {						\
			u64 val = __ ## reg ## _nMASK;			\
			val |= s;					\
			val &= ~c;					\
			write_sysreg_s(val, SYS_ ## reg);		\
		}							\
	} while(0)

#define update_fgt_traps(hctxt, vcpu, kvm, reg)		\
	update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0)

/*
 * Validate the fine grain trap masks.
 * Check that the masks do not overlap and that all bits are accounted for.
 */
#define CHECK_FGT_MASKS(reg)							\
	do {									\
		BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));	\
		BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^	\
			       (__ ## reg ## _nMASK)));				\
	} while(0)

static inline bool cpu_has_amu(void)
{
       u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);

       return cpuid_feature_extract_unsigned_field(pfr0,
               ID_AA64PFR0_EL1_AMU_SHIFT);
}

static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
	struct kvm *kvm = kern_hyp_va(vcpu->kvm);

	CHECK_FGT_MASKS(HFGRTR_EL2);
	CHECK_FGT_MASKS(HFGWTR_EL2);
	CHECK_FGT_MASKS(HFGITR_EL2);
	CHECK_FGT_MASKS(HDFGRTR_EL2);
	CHECK_FGT_MASKS(HDFGWTR_EL2);
	CHECK_FGT_MASKS(HAFGRTR_EL2);
	CHECK_FGT_MASKS(HCRX_EL2);

	if (!cpus_have_final_cap(ARM64_HAS_FGT))
		return;

	update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2);
	update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0,
			    cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ?
			    HFGxTR_EL2_TCR_EL1_MASK : 0);
	update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2);
	update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2);
	update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2);

	if (cpu_has_amu())
		update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2);
}

#define __deactivate_fgt(htcxt, vcpu, kvm, reg)				\
	do {								\
		if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) ||	\
		    kvm->arch.fgu[reg_to_fgt_group_id(reg)])		\
			write_sysreg_s(ctxt_sys_reg(hctxt, reg),	\
				       SYS_ ## reg);			\
	} while(0)

static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
	struct kvm *kvm = kern_hyp_va(vcpu->kvm);

	if (!cpus_have_final_cap(ARM64_HAS_FGT))
		return;

	__deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2);
	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
		write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
	else
		__deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2);
	__deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2);
	__deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2);
	__deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2);

	if (cpu_has_amu())
		__deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2);
}

static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	if (kvm_arm_support_pmu_v3()) {
		struct kvm_cpu_context *hctxt;

		write_sysreg(0, pmselr_el0);

		hctxt = host_data_ptr(host_ctxt);
		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
	}

	*host_data_ptr(host_debug_state.mdcr_el2) = read_sysreg(mdcr_el2);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);

	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
		u64 hcrx = vcpu->arch.hcrx_el2;
		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
			u64 clr = 0, set = 0;

			compute_clr_set(vcpu, HCRX_EL2, clr, set);

			hcrx |= set;
			hcrx &= ~clr;
		}

		write_sysreg_s(hcrx, SYS_HCRX_EL2);
	}

	__activate_traps_hfgxtr(vcpu);
}

static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
{
	write_sysreg(*host_data_ptr(host_debug_state.mdcr_el2), mdcr_el2);

	write_sysreg(0, hstr_el2);
	if (kvm_arm_support_pmu_v3()) {
		struct kvm_cpu_context *hctxt;

		hctxt = host_data_ptr(host_ctxt);
		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
	}

	if (cpus_have_final_cap(ARM64_HAS_HCX))
		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);

	__deactivate_traps_hfgxtr(vcpu);
}

static inline void ___activate_traps(struct kvm_vcpu *vcpu, u64 hcr)
{
	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
		hcr |= HCR_TVM;

	write_sysreg(hcr, hcr_el2);

	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
}

static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
{
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE) {
		vcpu->arch.hcr_el2 &= ~HCR_VSE;
		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
	}
}

static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
{
	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
}

static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
	arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
	write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);

	/*
	 * Finish potential single step before executing the prologue
	 * instruction.
	 */
	*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
	write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);

	return true;
}

static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
{
	/*
	 * The vCPU's saved SVE state layout always matches the max VL of the
	 * vCPU. Start off with the max VL so we can load the SVE state.
	 */
	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
	__sve_restore_state(vcpu_sve_pffr(vcpu),
			    &vcpu->arch.ctxt.fp_regs.fpsr,
			    true);

	/*
	 * The effective VL for a VM could differ from the max VL when running a
	 * nested guest, as the guest hypervisor could select a smaller VL. Slap
	 * that into hardware before wrapping up.
	 */
	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))
		sve_cond_update_zcr_vq(__vcpu_sys_reg(vcpu, ZCR_EL2), SYS_ZCR_EL2);

	write_sysreg_el1(__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)), SYS_ZCR);
}

static inline void __hyp_sve_save_host(void)
{
	struct cpu_sve_state *sve_state = *host_data_ptr(sve_state);

	sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR);
	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2);
	__sve_save_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl),
			 &sve_state->fpsr,
			 true);
}

static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu);

/*
 * We trap the first access to the FP/SIMD to save the host context and
 * restore the guest context lazily.
 * If FP/SIMD is not implemented, handle the trap and inject an undefined
 * instruction exception to the guest. Similarly for trapped SVE accesses.
 */
static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	bool sve_guest;
	u8 esr_ec;

	if (!system_supports_fpsimd())
		return false;

	sve_guest = vcpu_has_sve(vcpu);
	esr_ec = kvm_vcpu_trap_get_class(vcpu);

	/* Only handle traps the vCPU can support here: */
	switch (esr_ec) {
	case ESR_ELx_EC_FP_ASIMD:
		/* Forward traps to the guest hypervisor as required */
		if (guest_hyp_fpsimd_traps_enabled(vcpu))
			return false;
		break;
	case ESR_ELx_EC_SYS64:
		if (WARN_ON_ONCE(!is_hyp_ctxt(vcpu)))
			return false;
		fallthrough;
	case ESR_ELx_EC_SVE:
		if (!sve_guest)
			return false;
		if (guest_hyp_sve_traps_enabled(vcpu))
			return false;
		break;
	default:
		return false;
	}

	/* Valid trap.  Switch the context: */

	/* First disable enough traps to allow us to update the registers */
	if (sve_guest || (is_protected_kvm_enabled() && system_supports_sve()))
		cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN);
	else
		cpacr_clear_set(0, CPACR_ELx_FPEN);
	isb();

	/* Write out the host state if it's in the registers */
	if (host_owns_fp_regs())
		kvm_hyp_save_fpsimd_host(vcpu);

	/* Restore the guest state */
	if (sve_guest)
		__hyp_sve_restore_guest(vcpu);
	else
		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);

	*host_data_ptr(fp_owner) = FP_STATE_GUEST_OWNED;

	return true;
}

static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
{
	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
	int rt = kvm_vcpu_sys_get_rt(vcpu);
	u64 val = vcpu_get_reg(vcpu, rt);

	/*
	 * The normal sysreg handling code expects to see the traps,
	 * let's not do anything here.
	 */
	if (vcpu->arch.hcr_el2 & HCR_TVM)
		return false;

	switch (sysreg) {
	case SYS_SCTLR_EL1:
		write_sysreg_el1(val, SYS_SCTLR);
		break;
	case SYS_TTBR0_EL1:
		write_sysreg_el1(val, SYS_TTBR0);
		break;
	case SYS_TTBR1_EL1:
		write_sysreg_el1(val, SYS_TTBR1);
		break;
	case SYS_TCR_EL1:
		write_sysreg_el1(val, SYS_TCR);
		break;
	case SYS_ESR_EL1:
		write_sysreg_el1(val, SYS_ESR);
		break;
	case SYS_FAR_EL1:
		write_sysreg_el1(val, SYS_FAR);
		break;
	case SYS_AFSR0_EL1:
		write_sysreg_el1(val, SYS_AFSR0);
		break;
	case SYS_AFSR1_EL1:
		write_sysreg_el1(val, SYS_AFSR1);
		break;
	case SYS_MAIR_EL1:
		write_sysreg_el1(val, SYS_MAIR);
		break;
	case SYS_AMAIR_EL1:
		write_sysreg_el1(val, SYS_AMAIR);
		break;
	case SYS_CONTEXTIDR_EL1:
		write_sysreg_el1(val, SYS_CONTEXTIDR);
		break;
	default:
		return false;
	}

	__kvm_skip_instr(vcpu);
	return true;
}

static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *ctxt;
	u32 sysreg;
	u64 val;

	/*
	 * We only get here for 64bit guests, 32bit guests will hit
	 * the long and winding road all the way to the standard
	 * handling. Yes, it sucks to be irrelevant.
	 */
	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));

	switch (sysreg) {
	case SYS_CNTPCT_EL0:
	case SYS_CNTPCTSS_EL0:
		if (vcpu_has_nv(vcpu)) {
			if (is_hyp_ctxt(vcpu)) {
				ctxt = vcpu_hptimer(vcpu);
				break;
			}

			/* Check for guest hypervisor trapping */
			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
			if (!vcpu_el2_e2h_is_set(vcpu))
				val = (val & CNTHCTL_EL1PCTEN) << 10;

			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
				return false;
		}

		ctxt = vcpu_ptimer(vcpu);
		break;
	default:
		return false;
	}

	val = arch_timer_read_cntpct_el0();

	if (ctxt->offset.vm_offset)
		val -= *kern_hyp_va(ctxt->offset.vm_offset);
	if (ctxt->offset.vcpu_offset)
		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);

	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
	__kvm_skip_instr(vcpu);
	return true;
}

static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
{
	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
	int rt = kvm_vcpu_sys_get_rt(vcpu);
	u64 val = vcpu_get_reg(vcpu, rt);

	if (sysreg != SYS_TCR_EL1)
		return false;

	/*
	 * Affected parts do not advertise support for hardware Access Flag /
	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
	 * control bits are still functional. The architecture requires these be
	 * RES0 on systems that do not implement FEAT_HAFDBS.
	 *
	 * Uphold the requirements of the architecture by masking guest writes
	 * to TCR_EL1.{HA,HD} here.
	 */
	val &= ~(TCR_HD | TCR_HA);
	write_sysreg_el1(val, SYS_TCR);
	__kvm_skip_instr(vcpu);
	return true;
}

static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
	    handle_tx2_tvm(vcpu))
		return true;

	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
	    handle_ampere1_tcr(vcpu))
		return true;

	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
		return true;

	if (kvm_hyp_handle_cntpct(vcpu))
		return true;

	return false;
}

static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
		return true;

	return false;
}

static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (!__populate_fault_info(vcpu))
		return true;

	return false;
}
static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
	__alias(kvm_hyp_handle_memory_fault);
static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
	__alias(kvm_hyp_handle_memory_fault);

static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
		return true;

	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
		bool valid;

		valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_abt_issea(vcpu) &&
			!kvm_vcpu_abt_iss1tw(vcpu);

		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

			if (ret == 1)
				return true;

			/* Promote an illegal access to an SError.*/
			if (ret == -1)
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
		}
	}

	return false;
}

typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);

static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);

static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);

/*
 * Allow the hypervisor to handle the exit with an exit handler if it has one.
 *
 * Returns true if the hypervisor handled the exit, and control should go back
 * to the guest, or false if it hasn't.
 */
static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
	exit_handler_fn fn;

	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];

	if (fn)
		return fn(vcpu, exit_code);

	return false;
}

static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	/*
	 * Check for the conditions of Cortex-A510's #2077057. When these occur
	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
	 * Are we single-stepping the guest, and took a PAC exception from the
	 * active-not-pending state?
	 */
	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);

	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
}

/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	/*
	 * Save PSTATE early so that we can evaluate the vcpu mode
	 * early on.
	 */
	synchronize_vcpu_pstate(vcpu, exit_code);

	/*
	 * Check whether we want to repaint the state one way or
	 * another.
	 */
	early_exit_filter(vcpu, exit_code);

	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);

	if (ARM_SERROR_PENDING(*exit_code) &&
	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);

		/*
		 * HVC already have an adjusted PC, which we need to
		 * correct in order to return to after having injected
		 * the SError.
		 *
		 * SMC, on the other hand, is *trapped*, meaning its
		 * preferred return address is the SMC itself.
		 */
		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
	}

	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

	/* Check if there's an exit handler and allow it to handle the exit. */
	if (kvm_hyp_handle_exit(vcpu, exit_code))
		goto guest;
exit:
	/* Return to the host kernel and handle the exit */
	return false;

guest:
	/* Re-enter the guest */
	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
	return true;
}

static inline void __kvm_unexpected_el2_exception(void)
{
	extern char __guest_exit_restore_elr_and_panic[];
	unsigned long addr, fixup;
	struct kvm_exception_table_entry *entry, *end;
	unsigned long elr_el2 = read_sysreg(elr_el2);

	entry = &__start___kvm_ex_table;
	end = &__stop___kvm_ex_table;

	while (entry < end) {
		addr = (unsigned long)&entry->insn + entry->insn;
		fixup = (unsigned long)&entry->fixup + entry->fixup;

		if (addr != elr_el2) {
			entry++;
			continue;
		}

		write_sysreg(fixup, elr_el2);
		return;
	}

	/* Trigger a panic after restoring the hyp context. */
	this_cpu_ptr(&kvm_hyp_ctxt)->sys_regs[ELR_EL2] = elr_el2;
	write_sysreg(__guest_exit_restore_elr_and_panic, elr_el2);
}

#endif /* __ARM64_KVM_HYP_SWITCH_H__ */