/*
* linux/arch/m68k/atari/time.c
*
* Atari time and real time clock stuff
*
* Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/mc146818rtc.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <asm/atariints.h>
#include <asm/machdep.h>
#include "atari.h"
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
static u64 atari_read_clk(struct clocksource *cs);
static struct clocksource atari_clk = {
.name = "mfp",
.rating = 100,
.read = atari_read_clk,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 clk_total;
static u8 last_timer_count;
static irqreturn_t mfp_timer_c_handler(int irq, void *dev_id)
{
unsigned long flags;
local_irq_save(flags);
do {
last_timer_count = st_mfp.tim_dt_c;
} while (last_timer_count == 1);
clk_total += INT_TICKS;
legacy_timer_tick(1);
timer_heartbeat();
local_irq_restore(flags);
return IRQ_HANDLED;
}
void __init
atari_sched_init(void)
{
/* set Timer C data Register */
st_mfp.tim_dt_c = INT_TICKS;
/* start timer C, div = 1:100 */
st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
/* install interrupt service routine for MFP Timer C */
if (request_irq(IRQ_MFP_TIMC, mfp_timer_c_handler, IRQF_TIMER, "timer",
NULL))
pr_err("Couldn't register timer interrupt\n");
clocksource_register_hz(&atari_clk, INT_CLK);
}
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
static u64 atari_read_clk(struct clocksource *cs)
{
unsigned long flags;
u8 count;
u32 ticks;
local_irq_save(flags);
/* Ensure that the count is monotonically decreasing, even though
* the result may briefly stop changing after counter wrap-around.
*/
count = min(st_mfp.tim_dt_c, last_timer_count);
last_timer_count = count;
ticks = INT_TICKS - count;
ticks += clk_total;
local_irq_restore(flags);
return ticks;
}
static void mste_read(struct MSTE_RTC *val)
{
#define COPY(v) val->v=(mste_rtc.v & 0xf)
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from reading the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
static void mste_write(struct MSTE_RTC *val)
{
#define COPY(v) mste_rtc.v=val->v
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from writing the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
#define RTC_READ(reg) \
({ unsigned char __val; \
(void) atari_writeb(reg,&tt_rtc.regsel); \
__val = tt_rtc.data; \
__val; \
})
#define RTC_WRITE(reg,val) \
do { \
atari_writeb(reg,&tt_rtc.regsel); \
tt_rtc.data = (val); \
} while(0)
#define HWCLK_POLL_INTERVAL 5
int atari_mste_hwclk( int op, struct rtc_time *t )
{
int hour, year;
int hr24=0;
struct MSTE_RTC val;
mste_rtc.mode=(mste_rtc.mode | 1);
hr24=mste_rtc.mon_tens & 1;
mste_rtc.mode=(mste_rtc.mode & ~1);
if (op) {
/* write: prepare values */
val.sec_ones = t->tm_sec % 10;
val.sec_tens = t->tm_sec / 10;
val.min_ones = t->tm_min % 10;
val.min_tens = t->tm_min / 10;
hour = t->tm_hour;
if (!hr24) {
if (hour > 11)
hour += 20 - 12;
if (hour == 0 || hour == 20)
hour += 12;
}
val.hr_ones = hour % 10;
val.hr_tens = hour / 10;
val.day_ones = t->tm_mday % 10;
val.day_tens = t->tm_mday / 10;
val.mon_ones = (t->tm_mon+1) % 10;
val.mon_tens = (t->tm_mon+1) / 10;
year = t->tm_year - 80;
val.year_ones = year % 10;
val.year_tens = year / 10;
val.weekday = t->tm_wday;
mste_write(&val);
mste_rtc.mode=(mste_rtc.mode | 1);
val.year_ones = (year % 4); /* leap year register */
mste_rtc.mode=(mste_rtc.mode & ~1);
}
else {
mste_read(&val);
t->tm_sec = val.sec_ones + val.sec_tens * 10;
t->tm_min = val.min_ones + val.min_tens * 10;
hour = val.hr_ones + val.hr_tens * 10;
if (!hr24) {
if (hour == 12 || hour == 12 + 20)
hour -= 12;
if (hour >= 20)
hour += 12 - 20;
}
t->tm_hour = hour;
t->tm_mday = val.day_ones + val.day_tens * 10;
t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1;
t->tm_year = val.year_ones + val.year_tens * 10 + 80;
t->tm_wday = val.weekday;
}
return 0;
}
int atari_tt_hwclk( int op, struct rtc_time *t )
{
int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
unsigned long flags;
unsigned char ctrl;
int pm = 0;
ctrl = RTC_READ(RTC_CONTROL); /* control registers are
* independent from the UIP */
if (op) {
/* write: prepare values */
sec = t->tm_sec;
min = t->tm_min;
hour = t->tm_hour;
day = t->tm_mday;
mon = t->tm_mon + 1;
year = t->tm_year - atari_rtc_year_offset;
wday = t->tm_wday + (t->tm_wday >= 0);
if (!(ctrl & RTC_24H)) {
if (hour > 11) {
pm = 0x80;
if (hour != 12)
hour -= 12;
}
else if (hour == 0)
hour = 12;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hour = bin2bcd(hour);
day = bin2bcd(day);
mon = bin2bcd(mon);
year = bin2bcd(year);
if (wday >= 0)
wday = bin2bcd(wday);
}
}
/* Reading/writing the clock registers is a bit critical due to
* the regular update cycle of the RTC. While an update is in
* progress, registers 0..9 shouldn't be touched.
* The problem is solved like that: If an update is currently in
* progress (the UIP bit is set), the process sleeps for a while
* (50ms). This really should be enough, since the update cycle
* normally needs 2 ms.
* If the UIP bit reads as 0, we have at least 244 usecs until the
* update starts. This should be enough... But to be sure,
* additionally the RTC_SET bit is set to prevent an update cycle.
*/
while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
if (in_atomic() || irqs_disabled())
mdelay(1);
else
schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
}
local_irq_save(flags);
RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
if (!op) {
sec = RTC_READ( RTC_SECONDS );
min = RTC_READ( RTC_MINUTES );
hour = RTC_READ( RTC_HOURS );
day = RTC_READ( RTC_DAY_OF_MONTH );
mon = RTC_READ( RTC_MONTH );
year = RTC_READ( RTC_YEAR );
wday = RTC_READ( RTC_DAY_OF_WEEK );
}
else {
RTC_WRITE( RTC_SECONDS, sec );
RTC_WRITE( RTC_MINUTES, min );
RTC_WRITE( RTC_HOURS, hour + pm);
RTC_WRITE( RTC_DAY_OF_MONTH, day );
RTC_WRITE( RTC_MONTH, mon );
RTC_WRITE( RTC_YEAR, year );
if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
}
RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
local_irq_restore(flags);
if (!op) {
/* read: adjust values */
if (hour & 0x80) {
hour &= ~0x80;
pm = 1;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
wday = bcd2bin(wday);
}
if (!(ctrl & RTC_24H)) {
if (!pm && hour == 12)
hour = 0;
else if (pm && hour != 12)
hour += 12;
}
t->tm_sec = sec;
t->tm_min = min;
t->tm_hour = hour;
t->tm_mday = day;
t->tm_mon = mon - 1;
t->tm_year = year + atari_rtc_year_offset;
t->tm_wday = wday - 1;
}
return( 0 );
}