// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/crash_dump.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/iommu.h>
#include <linux/rculist.h>
#include <linux/sizes.h>
#include <linux/debugfs.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/xics.h>
#include <asm/firmware.h>
#include <asm/pnv-pci.h>
#include <asm/mmzone.h>
#include <asm/xive.h>
#include <misc/cxl-base.h>
#include "powernv.h"
#include "pci.h"
#include "../../../../drivers/pci/pci.h"
/* This array is indexed with enum pnv_phb_type */
static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" };
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
static void pnv_pci_configure_bus(struct pci_bus *bus);
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
char pfix[32];
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (pe->flags & PNV_IODA_PE_DEV)
strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
sprintf(pfix, "%04x:%02x ",
pci_domain_nr(pe->pbus), pe->pbus->number);
#ifdef CONFIG_PCI_IOV
else if (pe->flags & PNV_IODA_PE_VF)
sprintf(pfix, "%04x:%02x:%2x.%d",
pci_domain_nr(pe->parent_dev->bus),
(pe->rid & 0xff00) >> 8,
PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
printk("%spci %s: [PE# %.2x] %pV",
level, pfix, pe->pe_number, &vaf);
va_end(args);
}
static bool pnv_iommu_bypass_disabled __read_mostly;
static bool pci_reset_phbs __read_mostly;
static int __init iommu_setup(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (!strncmp(str, "nobypass", 8)) {
pnv_iommu_bypass_disabled = true;
pr_info("PowerNV: IOMMU bypass window disabled.\n");
break;
}
str += strcspn(str, ",");
if (*str == ',')
str++;
}
return 0;
}
early_param("iommu", iommu_setup);
static int __init pci_reset_phbs_setup(char *str)
{
pci_reset_phbs = true;
return 0;
}
early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
s64 rc;
phb->ioda.pe_array[pe_no].phb = phb;
phb->ioda.pe_array[pe_no].pe_number = pe_no;
phb->ioda.pe_array[pe_no].dma_setup_done = false;
/*
* Clear the PE frozen state as it might be put into frozen state
* in the last PCI remove path. It's not harmful to do so when the
* PE is already in unfrozen state.
*/
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number, pe_no);
return &phb->ioda.pe_array[pe_no];
}
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
pr_warn("%s: Invalid PE %x on PHB#%x\n",
__func__, pe_no, phb->hose->global_number);
return;
}
mutex_lock(&phb->ioda.pe_alloc_mutex);
if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
pr_debug("%s: PE %x was reserved on PHB#%x\n",
__func__, pe_no, phb->hose->global_number);
mutex_unlock(&phb->ioda.pe_alloc_mutex);
pnv_ioda_init_pe(phb, pe_no);
}
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
{
struct pnv_ioda_pe *ret = NULL;
int run = 0, pe, i;
mutex_lock(&phb->ioda.pe_alloc_mutex);
/* scan backwards for a run of @count cleared bits */
for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
if (test_bit(pe, phb->ioda.pe_alloc)) {
run = 0;
continue;
}
run++;
if (run == count)
break;
}
if (run != count)
goto out;
for (i = pe; i < pe + count; i++) {
set_bit(i, phb->ioda.pe_alloc);
pnv_ioda_init_pe(phb, i);
}
ret = &phb->ioda.pe_array[pe];
out:
mutex_unlock(&phb->ioda.pe_alloc_mutex);
return ret;
}
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = pe->phb;
unsigned int pe_num = pe->pe_number;
WARN_ON(pe->pdev);
memset(pe, 0, sizeof(struct pnv_ioda_pe));
mutex_lock(&phb->ioda.pe_alloc_mutex);
clear_bit(pe_num, phb->ioda.pe_alloc);
mutex_unlock(&phb->ioda.pe_alloc_mutex);
}
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
const char *desc;
struct resource *r;
s64 rc;
/* Configure the default M64 BAR */
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
phb->ioda.m64_base,
0, /* unused */
phb->ioda.m64_size);
if (rc != OPAL_SUCCESS) {
desc = "configuring";
goto fail;
}
/* Enable the default M64 BAR */
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_ENABLE_M64_SPLIT);
if (rc != OPAL_SUCCESS) {
desc = "enabling";
goto fail;
}
/*
* Exclude the segments for reserved and root bus PE, which
* are first or last two PEs.
*/
r = &phb->hose->mem_resources[1];
if (phb->ioda.reserved_pe_idx == 0)
r->start += (2 * phb->ioda.m64_segsize);
else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
r->end -= (2 * phb->ioda.m64_segsize);
else
pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
phb->ioda.reserved_pe_idx);
return 0;
fail:
pr_warn(" Failure %lld %s M64 BAR#%d\n",
rc, desc, phb->ioda.m64_bar_idx);
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_DISABLE_M64);
return -EIO;
}
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
unsigned long *pe_bitmap)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct resource *r;
resource_size_t base, sgsz, start, end;
int segno, i;
base = phb->ioda.m64_base;
sgsz = phb->ioda.m64_segsize;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
r = &pdev->resource[i];
if (!r->parent || !pnv_pci_is_m64(phb, r))
continue;
start = ALIGN_DOWN(r->start - base, sgsz);
end = ALIGN(r->end - base, sgsz);
for (segno = start / sgsz; segno < end / sgsz; segno++) {
if (pe_bitmap)
set_bit(segno, pe_bitmap);
else
pnv_ioda_reserve_pe(phb, segno);
}
}
}
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
unsigned long *pe_bitmap,
bool all)
{
struct pci_dev *pdev;
list_for_each_entry(pdev, &bus->devices, bus_list) {
pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
if (all && pdev->subordinate)
pnv_ioda_reserve_m64_pe(pdev->subordinate,
pe_bitmap, all);
}
}
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
struct pnv_ioda_pe *master_pe, *pe;
unsigned long size, *pe_alloc;
int i;
/* Root bus shouldn't use M64 */
if (pci_is_root_bus(bus))
return NULL;
/* Allocate bitmap */
size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
pe_alloc = kzalloc(size, GFP_KERNEL);
if (!pe_alloc) {
pr_warn("%s: Out of memory !\n",
__func__);
return NULL;
}
/* Figure out reserved PE numbers by the PE */
pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
/*
* the current bus might not own M64 window and that's all
* contributed by its child buses. For the case, we needn't
* pick M64 dependent PE#.
*/
if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
kfree(pe_alloc);
return NULL;
}
/*
* Figure out the master PE and put all slave PEs to master
* PE's list to form compound PE.
*/
master_pe = NULL;
i = -1;
while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
phb->ioda.total_pe_num) {
pe = &phb->ioda.pe_array[i];
phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
if (!master_pe) {
pe->flags |= PNV_IODA_PE_MASTER;
INIT_LIST_HEAD(&pe->slaves);
master_pe = pe;
} else {
pe->flags |= PNV_IODA_PE_SLAVE;
pe->master = master_pe;
list_add_tail(&pe->list, &master_pe->slaves);
}
}
kfree(pe_alloc);
return master_pe;
}
static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
struct device_node *dn = hose->dn;
struct resource *res;
u32 m64_range[2], i;
const __be32 *r;
u64 pci_addr;
if (phb->type != PNV_PHB_IODA2) {
pr_info(" Not support M64 window\n");
return;
}
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
pr_info(" Firmware too old to support M64 window\n");
return;
}
r = of_get_property(dn, "ibm,opal-m64-window", NULL);
if (!r) {
pr_info(" No <ibm,opal-m64-window> on %pOF\n",
dn);
return;
}
/*
* Find the available M64 BAR range and pickup the last one for
* covering the whole 64-bits space. We support only one range.
*/
if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
m64_range, 2)) {
/* In absence of the property, assume 0..15 */
m64_range[0] = 0;
m64_range[1] = 16;
}
/* We only support 64 bits in our allocator */
if (m64_range[1] > 63) {
pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
__func__, m64_range[1], phb->hose->global_number);
m64_range[1] = 63;
}
/* Empty range, no m64 */
if (m64_range[1] <= m64_range[0]) {
pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
__func__, phb->hose->global_number);
return;
}
/* Configure M64 informations */
res = &hose->mem_resources[1];
res->name = dn->full_name;
res->start = of_translate_address(dn, r + 2);
res->end = res->start + of_read_number(r + 4, 2) - 1;
res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
pci_addr = of_read_number(r, 2);
hose->mem_offset[1] = res->start - pci_addr;
phb->ioda.m64_size = resource_size(res);
phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
phb->ioda.m64_base = pci_addr;
/* This lines up nicely with the display from processing OF ranges */
pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
res->start, res->end, pci_addr, m64_range[0],
m64_range[0] + m64_range[1] - 1);
/* Mark all M64 used up by default */
phb->ioda.m64_bar_alloc = (unsigned long)-1;
/* Use last M64 BAR to cover M64 window */
m64_range[1]--;
phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
/* Mark remaining ones free */
for (i = m64_range[0]; i < m64_range[1]; i++)
clear_bit(i, &phb->ioda.m64_bar_alloc);
/*
* Setup init functions for M64 based on IODA version, IODA3 uses
* the IODA2 code.
*/
phb->init_m64 = pnv_ioda2_init_m64;
}
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
struct pnv_ioda_pe *slave;
s64 rc;
/* Fetch master PE */
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
return;
pe_no = pe->pe_number;
}
/* Freeze master PE */
rc = opal_pci_eeh_freeze_set(phb->opal_id,
pe_no,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number, pe_no);
return;
}
/* Freeze slave PEs */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_set(phb->opal_id,
slave->pe_number,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS)
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
slave->pe_number);
}
}
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
{
struct pnv_ioda_pe *pe, *slave;
s64 rc;
/* Find master PE */
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Clear frozen state for master PE */
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number, pe_no);
return -EIO;
}
if (!(pe->flags & PNV_IODA_PE_MASTER))
return 0;
/* Clear frozen state for slave PEs */
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
slave->pe_number,
opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number,
slave->pe_number);
return -EIO;
}
}
return 0;
}
static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *slave, *pe;
u8 fstate = 0, state;
__be16 pcierr = 0;
s64 rc;
/* Sanity check on PE number */
if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
return OPAL_EEH_STOPPED_PERM_UNAVAIL;
/*
* Fetch the master PE and the PE instance might be
* not initialized yet.
*/
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Check the master PE */
rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&state, &pcierr, NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, pe_no);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/* Check the slave PE */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return state;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
slave->pe_number,
&fstate,
&pcierr,
NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, slave->pe_number);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/*
* Override the result based on the ascending
* priority.
*/
if (fstate > state)
state = fstate;
}
return state;
}
struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
{
int pe_number = phb->ioda.pe_rmap[bdfn];
if (pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pe_number];
}
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
struct pci_dn *pdn = pci_get_pdn(dev);
if (!pdn)
return NULL;
if (pdn->pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pdn->pe_number];
}
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
struct pnv_ioda_pe *parent,
struct pnv_ioda_pe *child,
bool is_add)
{
const char *desc = is_add ? "adding" : "removing";
uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
OPAL_REMOVE_PE_FROM_DOMAIN;
struct pnv_ioda_pe *slave;
long rc;
/* Parent PE affects child PE */
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
child->pe_number, op);
if (rc != OPAL_SUCCESS) {
pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
rc, desc);
return -ENXIO;
}
if (!(child->flags & PNV_IODA_PE_MASTER))
return 0;
/* Compound case: parent PE affects slave PEs */
list_for_each_entry(slave, &child->slaves, list) {
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
slave->pe_number, op);
if (rc != OPAL_SUCCESS) {
pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
rc, desc);
return -ENXIO;
}
}
return 0;
}
static int pnv_ioda_set_peltv(struct pnv_phb *phb,
struct pnv_ioda_pe *pe,
bool is_add)
{
struct pnv_ioda_pe *slave;
struct pci_dev *pdev = NULL;
int ret;
/*
* Clear PE frozen state. If it's master PE, we need
* clear slave PE frozen state as well.
*/
if (is_add) {
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (pe->flags & PNV_IODA_PE_MASTER) {
list_for_each_entry(slave, &pe->slaves, list)
opal_pci_eeh_freeze_clear(phb->opal_id,
slave->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
}
}
/*
* Associate PE in PELT. We need add the PE into the
* corresponding PELT-V as well. Otherwise, the error
* originated from the PE might contribute to other
* PEs.
*/
ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
if (ret)
return ret;
/* For compound PEs, any one affects all of them */
if (pe->flags & PNV_IODA_PE_MASTER) {
list_for_each_entry(slave, &pe->slaves, list) {
ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
if (ret)
return ret;
}
}
if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
pdev = pe->pbus->self;
else if (pe->flags & PNV_IODA_PE_DEV)
pdev = pe->pdev->bus->self;
#ifdef CONFIG_PCI_IOV
else if (pe->flags & PNV_IODA_PE_VF)
pdev = pe->parent_dev;
#endif /* CONFIG_PCI_IOV */
while (pdev) {
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *parent;
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
parent = &phb->ioda.pe_array[pdn->pe_number];
ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
if (ret)
return ret;
}
pdev = pdev->bus->self;
}
return 0;
}
static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
struct pnv_ioda_pe *pe,
struct pci_dev *parent)
{
int64_t rc;
while (parent) {
struct pci_dn *pdn = pci_get_pdn(parent);
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
pe->pe_number,
OPAL_REMOVE_PE_FROM_DOMAIN);
/* XXX What to do in case of error ? */
}
parent = parent->bus->self;
}
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
/* Disassociate PE in PELT */
rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
if (rc)
pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
}
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
int64_t rc;
long rid_end, rid;
/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = resource_size(&pe->pbus->busn_res);
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
#ifdef CONFIG_PCI_IOV
if (pe->flags & PNV_IODA_PE_VF)
parent = pe->parent_dev;
else
#endif
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/* Clear the reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
/*
* Release from all parents PELT-V. NPUs don't have a PELTV
* table
*/
if (phb->type != PNV_PHB_NPU_OCAPI)
pnv_ioda_unset_peltv(phb, pe, parent);
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
if (rc)
pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
pe->pbus = NULL;
pe->pdev = NULL;
#ifdef CONFIG_PCI_IOV
pe->parent_dev = NULL;
#endif
return 0;
}
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
uint8_t bcomp, dcomp, fcomp;
long rc, rid_end, rid;
/* Bus validation ? */
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = resource_size(&pe->pbus->busn_res);
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/*
* Associate PE in PELT. We need add the PE into the
* corresponding PELT-V as well. Otherwise, the error
* originated from the PE might contribute to other
* PEs.
*/
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_MAP_PE);
if (rc) {
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
return -ENXIO;
}
/*
* Configure PELTV. NPUs don't have a PELTV table so skip
* configuration on them.
*/
if (phb->type != PNV_PHB_NPU_OCAPI)
pnv_ioda_set_peltv(phb, pe, true);
/* Setup reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = pe->pe_number;
pe->mve_number = 0;
return 0;
}
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
struct pci_dn *pdn = pci_get_pdn(dev);
struct pnv_ioda_pe *pe;
if (!pdn) {
pr_err("%s: Device tree node not associated properly\n",
pci_name(dev));
return NULL;
}
if (pdn->pe_number != IODA_INVALID_PE)
return NULL;
pe = pnv_ioda_alloc_pe(phb, 1);
if (!pe) {
pr_warn("%s: Not enough PE# available, disabling device\n",
pci_name(dev));
return NULL;
}
/* NOTE: We don't get a reference for the pointer in the PE
* data structure, both the device and PE structures should be
* destroyed at the same time.
*
* At some point we want to remove the PDN completely anyways
*/
pdn->pe_number = pe->pe_number;
pe->flags = PNV_IODA_PE_DEV;
pe->pdev = dev;
pe->pbus = NULL;
pe->mve_number = -1;
pe->rid = dev->bus->number << 8 | pdn->devfn;
pe->device_count++;
pe_info(pe, "Associated device to PE\n");
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
pnv_ioda_free_pe(pe);
pdn->pe_number = IODA_INVALID_PE;
pe->pdev = NULL;
return NULL;
}
/* Put PE to the list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_add_tail(&pe->list, &phb->ioda.pe_list);
mutex_unlock(&phb->ioda.pe_list_mutex);
return pe;
}
/*
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
* single PCI bus. Another one that contains the primary PCI bus and its
* subordinate PCI devices and buses. The second type of PE is normally
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
*/
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
struct pnv_ioda_pe *pe = NULL;
unsigned int pe_num;
/*
* In partial hotplug case, the PE instance might be still alive.
* We should reuse it instead of allocating a new one.
*/
pe_num = phb->ioda.pe_rmap[bus->number << 8];
if (WARN_ON(pe_num != IODA_INVALID_PE)) {
pe = &phb->ioda.pe_array[pe_num];
return NULL;
}
/* PE number for root bus should have been reserved */
if (pci_is_root_bus(bus))
pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
/* Check if PE is determined by M64 */
if (!pe)
pe = pnv_ioda_pick_m64_pe(bus, all);
/* The PE number isn't pinned by M64 */
if (!pe)
pe = pnv_ioda_alloc_pe(phb, 1);
if (!pe) {
pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
__func__, pci_domain_nr(bus), bus->number);
return NULL;
}
pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
pe->pbus = bus;
pe->pdev = NULL;
pe->mve_number = -1;
pe->rid = bus->busn_res.start << 8;
if (all)
pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
&bus->busn_res.start, &bus->busn_res.end,
pe->pe_number);
else
pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
&bus->busn_res.start, pe->pe_number);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
pnv_ioda_free_pe(pe);
pe->pbus = NULL;
return NULL;
}
/* Put PE to the list */
list_add_tail(&pe->list, &phb->ioda.pe_list);
return pe;
}
static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/* Check if the BDFN for this device is associated with a PE yet */
pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
if (!pe) {
/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
if (WARN_ON(pdev->is_virtfn))
return;
pnv_pci_configure_bus(pdev->bus);
pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
/*
* If we can't setup the IODA PE something has gone horribly
* wrong and we can't enable DMA for the device.
*/
if (WARN_ON(!pe))
return;
} else {
pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
}
/*
* We assume that bridges *probably* don't need to do any DMA so we can
* skip allocating a TCE table, etc unless we get a non-bridge device.
*/
if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
switch (phb->type) {
case PNV_PHB_IODA2:
pnv_pci_ioda2_setup_dma_pe(phb, pe);
break;
default:
pr_warn("%s: No DMA for PHB#%x (type %d)\n",
__func__, phb->hose->global_number, phb->type);
}
}
if (pdn)
pdn->pe_number = pe->pe_number;
pe->device_count++;
WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
/* PEs with a DMA weight of zero won't have a group */
if (pe->table_group.group)
iommu_add_device(&pe->table_group, &pdev->dev);
}
/*
* Reconfigure TVE#0 to be usable as 64-bit DMA space.
*
* The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
* Devices can only access more than that if bit 59 of the PCI address is set
* by hardware, which indicates TVE#1 should be used instead of TVE#0.
* Many PCI devices are not capable of addressing that many bits, and as a
* result are limited to the 4GB of virtual memory made available to 32-bit
* devices in TVE#0.
*
* In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
* devices by configuring the virtual memory past the first 4GB inaccessible
* by 64-bit DMAs. This should only be used by devices that want more than
* 4GB, and only on PEs that have no 32-bit devices.
*
* Currently this will only work on PHB3 (POWER8).
*/
static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
{
u64 window_size, table_size, tce_count, addr;
struct page *table_pages;
u64 tce_order = 28; /* 256MB TCEs */
__be64 *tces;
s64 rc;
/*
* Window size needs to be a power of two, but needs to account for
* shifting memory by the 4GB offset required to skip 32bit space.
*/
window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
tce_count = window_size >> tce_order;
table_size = tce_count << 3;
if (table_size < PAGE_SIZE)
table_size = PAGE_SIZE;
table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
get_order(table_size));
if (!table_pages)
goto err;
tces = page_address(table_pages);
if (!tces)
goto err;
memset(tces, 0, table_size);
for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
tces[(addr + (1ULL << 32)) >> tce_order] =
cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
}
rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
pe->pe_number,
/* reconfigure window 0 */
(pe->pe_number << 1) + 0,
1,
__pa(tces),
table_size,
1 << tce_order);
if (rc == OPAL_SUCCESS) {
pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
return 0;
}
err:
pe_err(pe, "Error configuring 64-bit DMA bypass\n");
return -EIO;
}
static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
u64 dma_mask)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return false;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (pe->tce_bypass_enabled) {
u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
if (dma_mask >= top)
return true;
}
/*
* If the device can't set the TCE bypass bit but still wants
* to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
* bypass the 32-bit region and be usable for 64-bit DMAs.
* The device needs to be able to address all of this space.
*/
if (dma_mask >> 32 &&
dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
/* pe->pdev should be set if it's a single device, pe->pbus if not */
(pe->device_count == 1 || !pe->pbus) &&
phb->model == PNV_PHB_MODEL_PHB3) {
/* Configure the bypass mode */
s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
if (rc)
return false;
/* 4GB offset bypasses 32-bit space */
pdev->dev.archdata.dma_offset = (1ULL << 32);
return true;
}
return false;
}
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
{
return phb->regs + 0x210;
}
#ifdef CONFIG_IOMMU_API
/* Common for IODA1 and IODA2 */
static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
unsigned long *hpa, enum dma_data_direction *direction)
{
return pnv_tce_xchg(tbl, index, hpa, direction);
}
#endif
#define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
#define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
#define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
/* 01xb - invalidate TCEs that match the specified PE# */
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
mb(); /* Ensure above stores are visible */
__raw_writeq_be(val, invalidate);
}
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
unsigned shift, unsigned long index,
unsigned long npages)
{
__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
unsigned long start, end, inc;
/* We'll invalidate DMA address in PE scope */
start = PHB3_TCE_KILL_INVAL_ONE;
start |= (pe->pe_number & 0xFF);
end = start;
/* Figure out the start, end and step */
start |= (index << shift);
end |= ((index + npages - 1) << shift);
inc = (0x1ull << shift);
mb();
while (start <= end) {
__raw_writeq_be(start, invalidate);
start += inc;
}
}
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = pe->phb;
if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
pnv_pci_phb3_tce_invalidate_pe(pe);
else
opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
pe->pe_number, 0, 0, 0);
}
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
unsigned long index, unsigned long npages)
{
struct iommu_table_group_link *tgl;
list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
struct pnv_ioda_pe *pe = container_of(tgl->table_group,
struct pnv_ioda_pe, table_group);
struct pnv_phb *phb = pe->phb;
unsigned int shift = tbl->it_page_shift;
if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
pnv_pci_phb3_tce_invalidate(pe, shift,
index, npages);
else
opal_pci_tce_kill(phb->opal_id,
OPAL_PCI_TCE_KILL_PAGES,
pe->pe_number, 1u << shift,
index << shift, npages);
}
}
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
unsigned long attrs)
{
int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
attrs);
if (!ret)
pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
return ret;
}
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
long npages)
{
pnv_tce_free(tbl, index, npages);
pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
}
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
.set = pnv_ioda2_tce_build,
#ifdef CONFIG_IOMMU_API
.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
.tce_kill = pnv_pci_ioda2_tce_invalidate,
.useraddrptr = pnv_tce_useraddrptr,
#endif
.clear = pnv_ioda2_tce_free,
.get = pnv_tce_get,
.free = pnv_pci_ioda2_table_free_pages,
};
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
int num, struct iommu_table *tbl)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = pe->phb;
int64_t rc;
const unsigned long size = tbl->it_indirect_levels ?
tbl->it_level_size : tbl->it_size;
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
num, start_addr, start_addr + win_size - 1,
IOMMU_PAGE_SIZE(tbl));
/*
* Map TCE table through TVT. The TVE index is the PE number
* shifted by 1 bit for 32-bits DMA space.
*/
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
(pe->pe_number << 1) + num,
tbl->it_indirect_levels + 1,
__pa(tbl->it_base),
size << 3,
IOMMU_PAGE_SIZE(tbl));
if (rc) {
pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
return rc;
}
pnv_pci_link_table_and_group(phb->hose->node, num,
tbl, &pe->table_group);
pnv_pci_ioda2_tce_invalidate_pe(pe);
return 0;
}
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
{
uint16_t window_id = (pe->pe_number << 1 ) + 1;
int64_t rc;
pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
if (enable) {
phys_addr_t top = memblock_end_of_DRAM();
top = roundup_pow_of_two(top);
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
top);
} else {
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
0);
}
if (rc)
pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
else
pe->tce_bypass_enabled = enable;
}
static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
int num, __u32 page_shift, __u64 window_size, __u32 levels,
bool alloc_userspace_copy, struct iommu_table **ptbl)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
int nid = pe->phb->hose->node;
__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
long ret;
struct iommu_table *tbl;
tbl = pnv_pci_table_alloc(nid);
if (!tbl)
return -ENOMEM;
tbl->it_ops = &pnv_ioda2_iommu_ops;
ret = pnv_pci_ioda2_table_alloc_pages(nid,
bus_offset, page_shift, window_size,
levels, alloc_userspace_copy, tbl);
if (ret) {
iommu_tce_table_put(tbl);
return ret;
}
*ptbl = tbl;
return 0;
}
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
struct iommu_table *tbl = NULL;
long rc;
unsigned long res_start, res_end;
/*
* crashkernel= specifies the kdump kernel's maximum memory at
* some offset and there is no guaranteed the result is a power
* of 2, which will cause errors later.
*/
const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
/*
* In memory constrained environments, e.g. kdump kernel, the
* DMA window can be larger than available memory, which will
* cause errors later.
*/
const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER);
/*
* We create the default window as big as we can. The constraint is
* the max order of allocation possible. The TCE table is likely to
* end up being multilevel and with on-demand allocation in place,
* the initial use is not going to be huge as the default window aims
* to support crippled devices (i.e. not fully 64bit DMAble) only.
*/
/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
/* Each TCE level cannot exceed maxblock so go multilevel if needed */
unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
unsigned long tcelevel_order = ilog2(maxblock >> 3);
unsigned int levels = tces_order / tcelevel_order;
if (tces_order % tcelevel_order)
levels += 1;
/*
* We try to stick to default levels (which is >1 at the moment) in
* order to save memory by relying on on-demain TCE level allocation.
*/
levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
window_size, levels, false, &tbl);
if (rc) {
pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
rc);
return rc;
}
/* We use top part of 32bit space for MMIO so exclude it from DMA */
res_start = 0;
res_end = 0;
if (window_size > pe->phb->ioda.m32_pci_base) {
res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
}
tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
else
rc = -ENOMEM;
if (rc) {
pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
iommu_tce_table_put(tbl);
tbl = NULL; /* This clears iommu_table_base below */
}
if (!pnv_iommu_bypass_disabled)
pnv_pci_ioda2_set_bypass(pe, true);
/*
* Set table base for the case of IOMMU DMA use. Usually this is done
* from dma_dev_setup() which is not called when a device is returned
* from VFIO so do it here.
*/
if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, tbl);
return 0;
}
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
int num)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = pe->phb;
long ret;
pe_info(pe, "Removing DMA window #%d\n", num);
ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
(pe->pe_number << 1) + num,
0/* levels */, 0/* table address */,
0/* table size */, 0/* page size */);
if (ret)
pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
else
pnv_pci_ioda2_tce_invalidate_pe(pe);
pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
return ret;
}
#ifdef CONFIG_IOMMU_API
unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
__u64 window_size, __u32 levels)
{
unsigned long bytes = 0;
const unsigned window_shift = ilog2(window_size);
unsigned entries_shift = window_shift - page_shift;
unsigned table_shift = entries_shift + 3;
unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
unsigned long direct_table_size;
if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
!is_power_of_2(window_size))
return 0;
/* Calculate a direct table size from window_size and levels */
entries_shift = (entries_shift + levels - 1) / levels;
table_shift = entries_shift + 3;
table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
direct_table_size = 1UL << table_shift;
for ( ; levels; --levels) {
bytes += ALIGN(tce_table_size, direct_table_size);
tce_table_size /= direct_table_size;
tce_table_size <<= 3;
tce_table_size = max_t(unsigned long,
tce_table_size, direct_table_size);
}
return bytes + bytes; /* one for HW table, one for userspace copy */
}
static long pnv_pci_ioda2_create_table_userspace(
struct iommu_table_group *table_group,
int num, __u32 page_shift, __u64 window_size, __u32 levels,
struct iommu_table **ptbl)
{
long ret = pnv_pci_ioda2_create_table(table_group,
num, page_shift, window_size, levels, true, ptbl);
if (!ret)
(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
page_shift, window_size, levels);
return ret;
}
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
dev->dev.archdata.dma_offset = pe->tce_bypass_base;
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
pnv_ioda_setup_bus_dma(pe, dev->subordinate);
}
}
static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group,
struct device *dev __maybe_unused)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
struct iommu_table *tbl = pe->table_group.tables[0];
/*
* iommu_ops transfers the ownership per a device and we mode
* the group ownership with the first device in the group.
*/
if (!tbl)
return 0;
pnv_pci_ioda2_set_bypass(pe, false);
pnv_pci_ioda2_unset_window(&pe->table_group, 0);
if (pe->pbus)
pnv_ioda_setup_bus_dma(pe, pe->pbus);
else if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, NULL);
iommu_tce_table_put(tbl);
return 0;
}
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group,
struct device *dev __maybe_unused)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
/* See the comment about iommu_ops above */
if (pe->table_group.tables[0])
return;
pnv_pci_ioda2_setup_default_config(pe);
if (pe->pbus)
pnv_ioda_setup_bus_dma(pe, pe->pbus);
}
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
.get_table_size = pnv_pci_ioda2_get_table_size,
.create_table = pnv_pci_ioda2_create_table_userspace,
.set_window = pnv_pci_ioda2_set_window,
.unset_window = pnv_pci_ioda2_unset_window,
.take_ownership = pnv_ioda2_take_ownership,
.release_ownership = pnv_ioda2_release_ownership,
};
#endif
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
int64_t rc;
/* TVE #1 is selected by PCI address bit 59 */
pe->tce_bypass_base = 1ull << 59;
/* The PE will reserve all possible 32-bits space */
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
phb->ioda.m32_pci_base);
/* Setup linux iommu table */
pe->table_group.tce32_start = 0;
pe->table_group.tce32_size = phb->ioda.m32_pci_base;
pe->table_group.max_dynamic_windows_supported =
IOMMU_TABLE_GROUP_MAX_TABLES;
pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
rc = pnv_pci_ioda2_setup_default_config(pe);
if (rc)
return;
#ifdef CONFIG_IOMMU_API
pe->table_group.ops = &pnv_pci_ioda2_ops;
iommu_register_group(&pe->table_group, phb->hose->global_number,
pe->pe_number);
#endif
pe->dma_setup_done = true;
}
/*
* Called from KVM in real mode to EOI passthru interrupts. The ICP
* EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
*
* The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
* needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
* numbers of the in-the-middle MSI domain are vector numbers and it's
* good enough for OPAL. Use that.
*/
int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
{
struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
struct pnv_phb *phb = hose->private_data;
return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
}
/*
* The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
*/
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
int64_t rc;
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct pci_controller *hose = irq_data_get_irq_chip_data(d);
struct pnv_phb *phb = hose->private_data;
rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
WARN_ON_ONCE(rc);
icp_native_eoi(d);
}
/* P8/CXL only */
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
{
struct irq_data *idata;
struct irq_chip *ichip;
/* The MSI EOI OPAL call is only needed on PHB3 */
if (phb->model != PNV_PHB_MODEL_PHB3)
return;
if (!phb->ioda.irq_chip_init) {
/*
* First time we setup an MSI IRQ, we need to setup the
* corresponding IRQ chip to route correctly.
*/
idata = irq_get_irq_data(virq);
ichip = irq_data_get_irq_chip(idata);
phb->ioda.irq_chip_init = 1;
phb->ioda.irq_chip = *ichip;
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
}
irq_set_chip(virq, &phb->ioda.irq_chip);
irq_set_chip_data(virq, phb->hose);
}
static struct irq_chip pnv_pci_msi_irq_chip;
/*
* Returns true iff chip is something that we could call
* pnv_opal_pci_msi_eoi for.
*/
bool is_pnv_opal_msi(struct irq_chip *chip)
{
return chip == &pnv_pci_msi_irq_chip;
}
EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
unsigned int xive_num,
unsigned int is_64, struct msi_msg *msg)
{
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
__be32 data;
int rc;
dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
is_64 ? "64" : "32", xive_num);
/* No PE assigned ? bail out ... no MSI for you ! */
if (pe == NULL)
return -ENXIO;
/* Check if we have an MVE */
if (pe->mve_number < 0)
return -ENXIO;
/* Force 32-bit MSI on some broken devices */
if (dev->no_64bit_msi)
is_64 = 0;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
pci_name(dev), rc, xive_num);
return -EIO;
}
if (is_64) {
__be64 addr64;
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
&addr64, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = be64_to_cpu(addr64) >> 32;
msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
} else {
__be32 addr32;
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
&addr32, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = 0;
msg->address_lo = be32_to_cpu(addr32);
}
msg->data = be32_to_cpu(data);
return 0;
}
/*
* The msi_free() op is called before irq_domain_free_irqs_top() when
* the handler data is still available. Use that to clear the XIVE
* controller.
*/
static void pnv_msi_ops_msi_free(struct irq_domain *domain,
struct msi_domain_info *info,
unsigned int irq)
{
if (xive_enabled())
xive_irq_free_data(irq);
}
static struct msi_domain_ops pnv_pci_msi_domain_ops = {
.msi_free = pnv_msi_ops_msi_free,
};
static void pnv_msi_shutdown(struct irq_data *d)
{
d = d->parent_data;
if (d->chip->irq_shutdown)
d->chip->irq_shutdown(d);
}
static void pnv_msi_mask(struct irq_data *d)
{
pci_msi_mask_irq(d);
irq_chip_mask_parent(d);
}
static void pnv_msi_unmask(struct irq_data *d)
{
pci_msi_unmask_irq(d);
irq_chip_unmask_parent(d);
}
static struct irq_chip pnv_pci_msi_irq_chip = {
.name = "PNV-PCI-MSI",
.irq_shutdown = pnv_msi_shutdown,
.irq_mask = pnv_msi_mask,
.irq_unmask = pnv_msi_unmask,
.irq_eoi = irq_chip_eoi_parent,
};
static struct msi_domain_info pnv_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX),
.ops = &pnv_pci_msi_domain_ops,
.chip = &pnv_pci_msi_irq_chip,
};
static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
{
struct msi_desc *entry = irq_data_get_msi_desc(d);
struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
struct pci_controller *hose = irq_data_get_irq_chip_data(d);
struct pnv_phb *phb = hose->private_data;
int rc;
rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
entry->pci.msi_attrib.is_64, msg);
if (rc)
dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
}
/*
* The IRQ data is mapped in the MSI domain in which HW IRQ numbers
* correspond to vector numbers.
*/
static void pnv_msi_eoi(struct irq_data *d)
{
struct pci_controller *hose = irq_data_get_irq_chip_data(d);
struct pnv_phb *phb = hose->private_data;
if (phb->model == PNV_PHB_MODEL_PHB3) {
/*
* The EOI OPAL call takes an OPAL HW IRQ number but
* since it is translated into a vector number in
* OPAL, use that directly.
*/
WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
}
irq_chip_eoi_parent(d);
}
static struct irq_chip pnv_msi_irq_chip = {
.name = "PNV-MSI",
.irq_shutdown = pnv_msi_shutdown,
.irq_mask = irq_chip_mask_parent,
.irq_unmask = irq_chip_unmask_parent,
.irq_eoi = pnv_msi_eoi,
.irq_set_affinity = irq_chip_set_affinity_parent,
.irq_compose_msi_msg = pnv_msi_compose_msg,
};
static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
unsigned int virq, int hwirq)
{
struct irq_fwspec parent_fwspec;
int ret;
parent_fwspec.fwnode = domain->parent->fwnode;
parent_fwspec.param_count = 2;
parent_fwspec.param[0] = hwirq;
parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
if (ret)
return ret;
return 0;
}
static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct pci_controller *hose = domain->host_data;
struct pnv_phb *phb = hose->private_data;
msi_alloc_info_t *info = arg;
struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
int hwirq;
int i, ret;
hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
if (hwirq < 0) {
dev_warn(&pdev->dev, "failed to find a free MSI\n");
return -ENOSPC;
}
dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
hose->dn, virq, hwirq, nr_irqs);
for (i = 0; i < nr_irqs; i++) {
ret = pnv_irq_parent_domain_alloc(domain, virq + i,
phb->msi_base + hwirq + i);
if (ret)
goto out;
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
&pnv_msi_irq_chip, hose);
}
return 0;
out:
irq_domain_free_irqs_parent(domain, virq, i - 1);
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
return ret;
}
static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct pci_controller *hose = irq_data_get_irq_chip_data(d);
struct pnv_phb *phb = hose->private_data;
pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
virq, d->hwirq, nr_irqs);
msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
/* XIVE domain is cleared through ->msi_free() */
}
static const struct irq_domain_ops pnv_irq_domain_ops = {
.alloc = pnv_irq_domain_alloc,
.free = pnv_irq_domain_free,
};
static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
{
struct pnv_phb *phb = hose->private_data;
struct irq_domain *parent = irq_get_default_host();
hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
if (!hose->fwnode)
return -ENOMEM;
hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
hose->fwnode,
&pnv_irq_domain_ops, hose);
if (!hose->dev_domain) {
pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
hose->dn, hose->global_number);
irq_domain_free_fwnode(hose->fwnode);
return -ENOMEM;
}
hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
&pnv_msi_domain_info,
hose->dev_domain);
if (!hose->msi_domain) {
pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
hose->dn, hose->global_number);
irq_domain_free_fwnode(hose->fwnode);
irq_domain_remove(hose->dev_domain);
return -ENOMEM;
}
return 0;
}
static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
unsigned int count;
const __be32 *prop = of_get_property(phb->hose->dn,
"ibm,opal-msi-ranges", NULL);
if (!prop) {
/* BML Fallback */
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
}
if (!prop)
return;
phb->msi_base = be32_to_cpup(prop);
count = be32_to_cpup(prop + 1);
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
phb->hose->global_number);
return;
}
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
count, phb->msi_base);
pnv_msi_allocate_domains(phb->hose, count);
}
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
struct resource *res)
{
struct pnv_phb *phb = pe->phb;
struct pci_bus_region region;
int index;
int64_t rc;
if (!res || !res->flags || res->start > res->end ||
res->flags & IORESOURCE_UNSET)
return;
if (res->flags & IORESOURCE_IO) {
region.start = res->start - phb->ioda.io_pci_base;
region.end = res->end - phb->ioda.io_pci_base;
index = region.start / phb->ioda.io_segsize;
while (index < phb->ioda.total_pe_num &&
region.start <= region.end) {
phb->ioda.io_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.io_segsize;
index++;
}
} else if ((res->flags & IORESOURCE_MEM) &&
!pnv_pci_is_m64(phb, res)) {
region.start = res->start -
phb->hose->mem_offset[0] -
phb->ioda.m32_pci_base;
region.end = res->end -
phb->hose->mem_offset[0] -
phb->ioda.m32_pci_base;
index = region.start / phb->ioda.m32_segsize;
while (index < phb->ioda.total_pe_num &&
region.start <= region.end) {
phb->ioda.m32_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.m32_segsize;
index++;
}
}
}
/*
* This function is supposed to be called on basis of PE from top
* to bottom style. So the I/O or MMIO segment assigned to
* parent PE could be overridden by its child PEs if necessary.
*/
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
{
struct pci_dev *pdev;
int i;
/*
* NOTE: We only care PCI bus based PE for now. For PCI
* device based PE, for example SRIOV sensitive VF should
* be figured out later.
*/
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
/*
* If the PE contains all subordinate PCI buses, the
* windows of the child bridges should be mapped to
* the PE as well.
*/
if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
continue;
for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
pnv_ioda_setup_pe_res(pe,
&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
}
}
#ifdef CONFIG_DEBUG_FS
static int pnv_pci_diag_data_set(void *data, u64 val)
{
struct pnv_phb *phb = data;
s64 ret;
/* Retrieve the diag data from firmware */
ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
phb->diag_data_size);
if (ret != OPAL_SUCCESS)
return -EIO;
/* Print the diag data to the kernel log */
pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
"%llu\n");
static int pnv_pci_ioda_pe_dump(void *data, u64 val)
{
struct pnv_phb *phb = data;
int pe_num;
for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
if (!test_bit(pe_num, phb->ioda.pe_alloc))
continue;
pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
pe->rid, pe->device_count,
(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
}
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
pnv_pci_ioda_pe_dump, "%llu\n");
#endif /* CONFIG_DEBUG_FS */
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
char name[16];
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
sprintf(name, "PCI%04x", hose->global_number);
phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
phb, &pnv_pci_diag_data_fops);
debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
phb, &pnv_pci_ioda_pe_dump_fops);
}
#endif /* CONFIG_DEBUG_FS */
}
static void pnv_pci_enable_bridge(struct pci_bus *bus)
{
struct pci_dev *dev = bus->self;
struct pci_bus *child;
/* Empty bus ? bail */
if (list_empty(&bus->devices))
return;
/*
* If there's a bridge associated with that bus enable it. This works
* around races in the generic code if the enabling is done during
* parallel probing. This can be removed once those races have been
* fixed.
*/
if (dev) {
int rc = pci_enable_device(dev);
if (rc)
pci_err(dev, "Error enabling bridge (%d)\n", rc);
pci_set_master(dev);
}
/* Perform the same to child busses */
list_for_each_entry(child, &bus->children, node)
pnv_pci_enable_bridge(child);
}
static void pnv_pci_enable_bridges(void)
{
struct pci_controller *hose;
list_for_each_entry(hose, &hose_list, list_node)
pnv_pci_enable_bridge(hose->bus);
}
static void pnv_pci_ioda_fixup(void)
{
pnv_pci_ioda_create_dbgfs();
pnv_pci_enable_bridges();
#ifdef CONFIG_EEH
pnv_eeh_post_init();
#endif
}
/*
* Returns the alignment for I/O or memory windows for P2P
* bridges. That actually depends on how PEs are segmented.
* For now, we return I/O or M32 segment size for PE sensitive
* P2P bridges. Otherwise, the default values (4KiB for I/O,
* 1MiB for memory) will be returned.
*
* The current PCI bus might be put into one PE, which was
* create against the parent PCI bridge. For that case, we
* needn't enlarge the alignment so that we can save some
* resources.
*/
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
unsigned long type)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
int num_pci_bridges = 0;
struct pci_dev *bridge;
bridge = bus->self;
while (bridge) {
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
num_pci_bridges++;
if (num_pci_bridges >= 2)
return 1;
}
bridge = bridge->bus->self;
}
/*
* We fall back to M32 if M64 isn't supported. We enforce the M64
* alignment for any 64-bit resource, PCIe doesn't care and
* bridges only do 64-bit prefetchable anyway.
*/
if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
return phb->ioda.m64_segsize;
if (type & IORESOURCE_MEM)
return phb->ioda.m32_segsize;
return phb->ioda.io_segsize;
}
/*
* We are updating root port or the upstream port of the
* bridge behind the root port with PHB's windows in order
* to accommodate the changes on required resources during
* PCI (slot) hotplug, which is connected to either root
* port or the downstream ports of PCIe switch behind the
* root port.
*/
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
unsigned long type)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dev *bridge = bus->self;
struct resource *r, *w;
bool msi_region = false;
int i;
/* Check if we need apply fixup to the bridge's windows */
if (!pci_is_root_bus(bridge->bus) &&
!pci_is_root_bus(bridge->bus->self->bus))
return;
/* Fixup the resources */
for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
if (!r->flags || !r->parent)
continue;
w = NULL;
if (r->flags & type & IORESOURCE_IO)
w = &hose->io_resource;
else if (pnv_pci_is_m64(phb, r) &&
(type & IORESOURCE_PREFETCH) &&
phb->ioda.m64_segsize)
w = &hose->mem_resources[1];
else if (r->flags & type & IORESOURCE_MEM) {
w = &hose->mem_resources[0];
msi_region = true;
}
r->start = w->start;
r->end = w->end;
/* The 64KB 32-bits MSI region shouldn't be included in
* the 32-bits bridge window. Otherwise, we can see strange
* issues. One of them is EEH error observed on Garrison.
*
* Exclude top 1MB region which is the minimal alignment of
* 32-bits bridge window.
*/
if (msi_region) {
r->end += 0x10000;
r->end -= 0x100000;
}
}
}
static void pnv_pci_configure_bus(struct pci_bus *bus)
{
struct pci_dev *bridge = bus->self;
struct pnv_ioda_pe *pe;
bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
dev_info(&bus->dev, "Configuring PE for bus\n");
/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
if (WARN_ON(list_empty(&bus->devices)))
return;
/* Reserve PEs according to used M64 resources */
pnv_ioda_reserve_m64_pe(bus, NULL, all);
/*
* Assign PE. We might run here because of partial hotplug.
* For the case, we just pick up the existing PE and should
* not allocate resources again.
*/
pe = pnv_ioda_setup_bus_PE(bus, all);
if (!pe)
return;
pnv_ioda_setup_pe_seg(pe);
}
static resource_size_t pnv_pci_default_alignment(void)
{
return PAGE_SIZE;
}
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
{
struct pci_dn *pdn;
pdn = pci_get_pdn(dev);
if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
return false;
}
return true;
}
static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
{
struct pci_dn *pdn;
struct pnv_ioda_pe *pe;
pdn = pci_get_pdn(dev);
if (!pdn)
return false;
if (pdn->pe_number == IODA_INVALID_PE) {
pe = pnv_ioda_setup_dev_PE(dev);
if (!pe)
return false;
}
return true;
}
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
struct iommu_table *tbl = pe->table_group.tables[0];
int64_t rc;
if (!pe->dma_setup_done)
return;
rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
if (rc)
pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
pnv_pci_ioda2_set_bypass(pe, false);
if (pe->table_group.group) {
iommu_group_put(pe->table_group.group);
WARN_ON(pe->table_group.group);
}
iommu_tce_table_put(tbl);
}
static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
unsigned short win,
unsigned int *map)
{
struct pnv_phb *phb = pe->phb;
int idx;
int64_t rc;
for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
if (map[idx] != pe->pe_number)
continue;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
phb->ioda.reserved_pe_idx, win, 0, idx);
if (rc != OPAL_SUCCESS)
pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
rc, win, idx);
map[idx] = IODA_INVALID_PE;
}
}
static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = pe->phb;
if (phb->type == PNV_PHB_IODA2) {
pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
phb->ioda.m32_segmap);
}
}
static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = pe->phb;
struct pnv_ioda_pe *slave, *tmp;
pe_info(pe, "Releasing PE\n");
mutex_lock(&phb->ioda.pe_list_mutex);
list_del(&pe->list);
mutex_unlock(&phb->ioda.pe_list_mutex);
switch (phb->type) {
case PNV_PHB_IODA2:
pnv_pci_ioda2_release_pe_dma(pe);
break;
case PNV_PHB_NPU_OCAPI:
break;
default:
WARN_ON(1);
}
pnv_ioda_release_pe_seg(pe);
pnv_ioda_deconfigure_pe(pe->phb, pe);
/* Release slave PEs in the compound PE */
if (pe->flags & PNV_IODA_PE_MASTER) {
list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
list_del(&slave->list);
pnv_ioda_free_pe(slave);
}
}
/*
* The PE for root bus can be removed because of hotplug in EEH
* recovery for fenced PHB error. We need to mark the PE dead so
* that it can be populated again in PCI hot add path. The PE
* shouldn't be destroyed as it's the global reserved resource.
*/
if (phb->ioda.root_pe_idx == pe->pe_number)
return;
pnv_ioda_free_pe(pe);
}
static void pnv_pci_release_device(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/* The VF PE state is torn down when sriov_disable() is called */
if (pdev->is_virtfn)
return;
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return;
#ifdef CONFIG_PCI_IOV
/*
* FIXME: Try move this to sriov_disable(). It's here since we allocate
* the iov state at probe time since we need to fiddle with the IOV
* resources.
*/
if (pdev->is_physfn)
kfree(pdev->dev.archdata.iov_data);
#endif
/*
* PCI hotplug can happen as part of EEH error recovery. The @pdn
* isn't removed and added afterwards in this scenario. We should
* set the PE number in @pdn to an invalid one. Otherwise, the PE's
* device count is decreased on removing devices while failing to
* be increased on adding devices. It leads to unbalanced PE's device
* count and eventually make normal PCI hotplug path broken.
*/
pe = &phb->ioda.pe_array[pdn->pe_number];
pdn->pe_number = IODA_INVALID_PE;
WARN_ON(--pe->device_count < 0);
if (pe->device_count == 0)
pnv_ioda_release_pe(pe);
}
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
OPAL_ASSERT_RESET);
}
static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
struct pnv_ioda_pe *pe;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
continue;
if (!pe->pbus)
continue;
if (bus->number == ((pe->rid >> 8) & 0xFF)) {
pe->pbus = bus;
break;
}
}
}
#ifdef CONFIG_IOMMU_API
static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
struct pci_dev *pdev)
{
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
if (WARN_ON(!phb))
return ERR_PTR(-ENODEV);
pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
if (!pe)
return ERR_PTR(-ENODEV);
if (!pe->table_group.group)
return ERR_PTR(-ENODEV);
return iommu_group_ref_get(pe->table_group.group);
}
#endif
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
.dma_dev_setup = pnv_pci_ioda_dma_dev_setup,
.dma_bus_setup = pnv_pci_ioda_dma_bus_setup,
.iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
.enable_device_hook = pnv_pci_enable_device_hook,
.release_device = pnv_pci_release_device,
.window_alignment = pnv_pci_window_alignment,
.setup_bridge = pnv_pci_fixup_bridge_resources,
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
.shutdown = pnv_pci_ioda_shutdown,
#ifdef CONFIG_IOMMU_API
.device_group = pnv_pci_device_group,
#endif
};
static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
.enable_device_hook = pnv_ocapi_enable_device_hook,
.release_device = pnv_pci_release_device,
.window_alignment = pnv_pci_window_alignment,
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
.shutdown = pnv_pci_ioda_shutdown,
};
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
u64 hub_id, int ioda_type)
{
struct pci_controller *hose;
struct pnv_phb *phb;
unsigned long size, m64map_off, m32map_off, pemap_off;
struct pnv_ioda_pe *root_pe;
struct resource r;
const __be64 *prop64;
const __be32 *prop32;
int len;
unsigned int segno;
u64 phb_id;
void *aux;
long rc;
if (!of_device_is_available(np))
return;
pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
return;
}
phb_id = be64_to_cpup(prop64);
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = kzalloc(sizeof(*phb), GFP_KERNEL);
if (!phb)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*phb));
/* Allocate PCI controller */
phb->hose = hose = pcibios_alloc_controller(np);
if (!phb->hose) {
pr_err(" Can't allocate PCI controller for %pOF\n",
np);
memblock_free(phb, sizeof(struct pnv_phb));
return;
}
spin_lock_init(&phb->lock);
prop32 = of_get_property(np, "bus-range", &len);
if (prop32 && len == 8) {
hose->first_busno = be32_to_cpu(prop32[0]);
hose->last_busno = be32_to_cpu(prop32[1]);
} else {
pr_warn(" Broken <bus-range> on %pOF\n", np);
hose->first_busno = 0;
hose->last_busno = 0xff;
}
hose->private_data = phb;
phb->hub_id = hub_id;
phb->opal_id = phb_id;
phb->type = ioda_type;
mutex_init(&phb->ioda.pe_alloc_mutex);
/* Detect specific models for error handling */
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
phb->model = PNV_PHB_MODEL_P7IOC;
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
phb->model = PNV_PHB_MODEL_PHB3;
else
phb->model = PNV_PHB_MODEL_UNKNOWN;
/* Initialize diagnostic data buffer */
prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
if (prop32)
phb->diag_data_size = be32_to_cpup(prop32);
else
phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
if (!phb->diag_data)
panic("%s: Failed to allocate %u bytes\n", __func__,
phb->diag_data_size);
/* Parse 32-bit and IO ranges (if any) */
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
/* Get registers */
if (!of_address_to_resource(np, 0, &r)) {
phb->regs_phys = r.start;
phb->regs = ioremap(r.start, resource_size(&r));
if (phb->regs == NULL)
pr_err(" Failed to map registers !\n");
}
/* Initialize more IODA stuff */
phb->ioda.total_pe_num = 1;
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
if (prop32)
phb->ioda.total_pe_num = be32_to_cpup(prop32);
prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
if (prop32)
phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
/* Invalidate RID to PE# mapping */
for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
/* Parse 64-bit MMIO range */
pnv_ioda_parse_m64_window(phb);
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
/* FW Has already off top 64k of M32 space (MSI space) */
phb->ioda.m32_size += 0x10000;
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
phb->ioda.io_size = hose->pci_io_size;
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
sizeof(unsigned long));
m64map_off = size;
size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
m32map_off = size;
size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
pemap_off = size;
size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
aux = kzalloc(size, GFP_KERNEL);
if (!aux)
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
phb->ioda.pe_alloc = aux;
phb->ioda.m64_segmap = aux + m64map_off;
phb->ioda.m32_segmap = aux + m32map_off;
for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
}
phb->ioda.pe_array = aux + pemap_off;
/*
* Choose PE number for root bus, which shouldn't have
* M64 resources consumed by its child devices. To pick
* the PE number adjacent to the reserved one if possible.
*/
pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
if (phb->ioda.reserved_pe_idx == 0) {
phb->ioda.root_pe_idx = 1;
pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
} else {
/* otherwise just allocate one */
root_pe = pnv_ioda_alloc_pe(phb, 1);
phb->ioda.root_pe_idx = root_pe->pe_number;
}
INIT_LIST_HEAD(&phb->ioda.pe_list);
mutex_init(&phb->ioda.pe_list_mutex);
#if 0 /* We should really do that ... */
rc = opal_pci_set_phb_mem_window(opal->phb_id,
window_type,
window_num,
starting_real_address,
starting_pci_address,
segment_size);
#endif
pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
phb->ioda.m32_size, phb->ioda.m32_segsize);
if (phb->ioda.m64_size)
pr_info(" M64: 0x%lx [segment=0x%lx]\n",
phb->ioda.m64_size, phb->ioda.m64_segsize);
if (phb->ioda.io_size)
pr_info(" IO: 0x%x [segment=0x%x]\n",
phb->ioda.io_size, phb->ioda.io_segsize);
phb->hose->ops = &pnv_pci_ops;
phb->get_pe_state = pnv_ioda_get_pe_state;
phb->freeze_pe = pnv_ioda_freeze_pe;
phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
/* Setup MSI support */
pnv_pci_init_ioda_msis(phb);
/*
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
* to let the PCI core do resource assignment. It's supposed
* that the PCI core will do correct I/O and MMIO alignment
* for the P2P bridge bars so that each PCI bus (excluding
* the child P2P bridges) can form individual PE.
*/
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
switch (phb->type) {
case PNV_PHB_NPU_OCAPI:
hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
break;
default:
hose->controller_ops = pnv_pci_ioda_controller_ops;
}
ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
#ifdef CONFIG_PCI_IOV
ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
#endif
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
/* Reset IODA tables to a clean state */
rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
if (rc)
pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
/*
* If we're running in kdump kernel, the previous kernel never
* shutdown PCI devices correctly. We already got IODA table
* cleaned out. So we have to issue PHB reset to stop all PCI
* transactions from previous kernel. The ppc_pci_reset_phbs
* kernel parameter will force this reset too. Additionally,
* if the IODA reset above failed then use a bigger hammer.
* This can happen if we get a PHB fatal error in very early
* boot.
*/
if (is_kdump_kernel() || pci_reset_phbs || rc) {
pr_info(" Issue PHB reset ...\n");
pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
}
/* Remove M64 resource if we can't configure it successfully */
if (!phb->init_m64 || phb->init_m64(phb))
hose->mem_resources[1].flags = 0;
/* create pci_dn's for DT nodes under this PHB */
pci_devs_phb_init_dynamic(hose);
}
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
{
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
}
void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
{
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
}
static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
if (!machine_is(powernv))
return;
if (phb->type == PNV_PHB_NPU_OCAPI)
dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
}
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);