// SPDX-License-Identifier: GPL-2.0-or-later
/*
* spu_switch.c
*
* (C) Copyright IBM Corp. 2005
*
* Author: Mark Nutter <[email protected]>
*
* Host-side part of SPU context switch sequence outlined in
* Synergistic Processor Element, Book IV.
*
* A fully premptive switch of an SPE is very expensive in terms
* of time and system resources. SPE Book IV indicates that SPE
* allocation should follow a "serially reusable device" model,
* in which the SPE is assigned a task until it completes. When
* this is not possible, this sequence may be used to premptively
* save, and then later (optionally) restore the context of a
* program executing on an SPE.
*/
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/hardirq.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <asm/io.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/spu_csa.h>
#include <asm/mmu_context.h>
#include "spufs.h"
#include "spu_save_dump.h"
#include "spu_restore_dump.h"
#if 0
#define POLL_WHILE_TRUE(_c) { \
do { \
} while (_c); \
}
#else
#define RELAX_SPIN_COUNT 1000
#define POLL_WHILE_TRUE(_c) { \
do { \
int _i; \
for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
cpu_relax(); \
} \
if (unlikely(_c)) yield(); \
else break; \
} while (_c); \
}
#endif /* debug */
#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
static inline void acquire_spu_lock(struct spu *spu)
{
/* Save, Step 1:
* Restore, Step 1:
* Acquire SPU-specific mutual exclusion lock.
* TBD.
*/
}
static inline void release_spu_lock(struct spu *spu)
{
/* Restore, Step 76:
* Release SPU-specific mutual exclusion lock.
* TBD.
*/
}
static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 isolate_state;
/* Save, Step 2:
* Save, Step 6:
* If SPU_Status[E,L,IS] any field is '1', this
* SPU is in isolate state and cannot be context
* saved at this time.
*/
isolate_state = SPU_STATUS_ISOLATED_STATE |
SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
}
static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 3:
* Restore, Step 2:
* Save INT_Mask_class0 in CSA.
* Write INT_MASK_class0 with value of 0.
* Save INT_Mask_class1 in CSA.
* Write INT_MASK_class1 with value of 0.
* Save INT_Mask_class2 in CSA.
* Write INT_MASK_class2 with value of 0.
* Synchronize all three interrupts to be sure
* we no longer execute a handler on another CPU.
*/
spin_lock_irq(&spu->register_lock);
if (csa) {
csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
}
spu_int_mask_set(spu, 0, 0ul);
spu_int_mask_set(spu, 1, 0ul);
spu_int_mask_set(spu, 2, 0ul);
eieio();
spin_unlock_irq(&spu->register_lock);
/*
* This flag needs to be set before calling synchronize_irq so
* that the update will be visible to the relevant handlers
* via a simple load.
*/
set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
synchronize_irq(spu->irqs[0]);
synchronize_irq(spu->irqs[1]);
synchronize_irq(spu->irqs[2]);
}
static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 4:
* Restore, Step 25.
* Set a software watchdog timer, which specifies the
* maximum allowable time for a context save sequence.
*
* For present, this implementation will not set a global
* watchdog timer, as virtualization & variable system load
* may cause unpredictable execution times.
*/
}
static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 5:
* Restore, Step 3:
* Inhibit user-space access (if provided) to this
* SPU by unmapping the virtual pages assigned to
* the SPU memory-mapped I/O (MMIO) for problem
* state. TBD.
*/
}
static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 7:
* Restore, Step 5:
* Set a software context switch pending flag.
* Done above in Step 3 - disable_interrupts().
*/
}
static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 8:
* Suspend DMA and save MFC_CNTL.
*/
switch (in_be64(&priv2->mfc_control_RW) &
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
case MFC_CNTL_SUSPEND_IN_PROGRESS:
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
MFC_CNTL_SUSPEND_COMPLETE);
fallthrough;
case MFC_CNTL_SUSPEND_COMPLETE:
if (csa)
csa->priv2.mfc_control_RW =
in_be64(&priv2->mfc_control_RW) |
MFC_CNTL_SUSPEND_DMA_QUEUE;
break;
case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
MFC_CNTL_SUSPEND_COMPLETE);
if (csa)
csa->priv2.mfc_control_RW =
in_be64(&priv2->mfc_control_RW) &
~MFC_CNTL_SUSPEND_DMA_QUEUE &
~MFC_CNTL_SUSPEND_MASK;
break;
}
}
static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 9:
* Save SPU_Runcntl in the CSA. This value contains
* the "Application Desired State".
*/
csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
}
static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 10:
* Save MFC_SR1 in the CSA.
*/
csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
}
static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 11:
* Read SPU_Status[R], and save to CSA.
*/
if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
} else {
u32 stopped;
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
stopped =
SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
if ((in_be32(&prob->spu_status_R) & stopped) == 0)
csa->prob.spu_status_R = SPU_STATUS_RUNNING;
else
csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
}
}
static inline void save_mfc_stopped_status(struct spu_state *csa,
struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
MFC_CNTL_DMA_QUEUES_EMPTY;
/* Save, Step 12:
* Read MFC_CNTL[Ds]. Update saved copy of
* CSA.MFC_CNTL[Ds].
*
* update: do the same with MFC_CNTL[Q].
*/
csa->priv2.mfc_control_RW &= ~mask;
csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
}
static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 13:
* Write MFC_CNTL[Dh] set to a '1' to halt
* the decrementer.
*/
out_be64(&priv2->mfc_control_RW,
MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
eieio();
}
static inline void save_timebase(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 14:
* Read PPE Timebase High and Timebase low registers
* and save in CSA. TBD.
*/
csa->suspend_time = get_cycles();
}
static inline void remove_other_spu_access(struct spu_state *csa,
struct spu *spu)
{
/* Save, Step 15:
* Remove other SPU access to this SPU by unmapping
* this SPU's pages from their address space. TBD.
*/
}
static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 16:
* Restore, Step 11.
* Write SPU_MSSync register. Poll SPU_MSSync[P]
* for a value of 0.
*/
out_be64(&prob->spc_mssync_RW, 1UL);
POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
}
static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 17:
* Restore, Step 12.
* Restore, Step 48.
* Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
* Then issue a PPE sync instruction.
*/
spu_tlb_invalidate(spu);
mb();
}
static inline void handle_pending_interrupts(struct spu_state *csa,
struct spu *spu)
{
/* Save, Step 18:
* Handle any pending interrupts from this SPU
* here. This is OS or hypervisor specific. One
* option is to re-enable interrupts to handle any
* pending interrupts, with the interrupt handlers
* recognizing the software Context Switch Pending
* flag, to ensure the SPU execution or MFC command
* queue is not restarted. TBD.
*/
}
static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
int i;
/* Save, Step 19:
* If MFC_Cntl[Se]=0 then save
* MFC command queues.
*/
if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
for (i = 0; i < 8; i++) {
csa->priv2.puq[i].mfc_cq_data0_RW =
in_be64(&priv2->puq[i].mfc_cq_data0_RW);
csa->priv2.puq[i].mfc_cq_data1_RW =
in_be64(&priv2->puq[i].mfc_cq_data1_RW);
csa->priv2.puq[i].mfc_cq_data2_RW =
in_be64(&priv2->puq[i].mfc_cq_data2_RW);
csa->priv2.puq[i].mfc_cq_data3_RW =
in_be64(&priv2->puq[i].mfc_cq_data3_RW);
}
for (i = 0; i < 16; i++) {
csa->priv2.spuq[i].mfc_cq_data0_RW =
in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
csa->priv2.spuq[i].mfc_cq_data1_RW =
in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
csa->priv2.spuq[i].mfc_cq_data2_RW =
in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
csa->priv2.spuq[i].mfc_cq_data3_RW =
in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
}
}
}
static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 20:
* Save the PPU_QueryMask register
* in the CSA.
*/
csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
}
static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 21:
* Save the PPU_QueryType register
* in the CSA.
*/
csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
}
static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save the Prxy_TagStatus register in the CSA.
*
* It is unnecessary to restore dma_tagstatus_R, however,
* dma_tagstatus_R in the CSA is accessed via backing_ops, so
* we must save it.
*/
csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
}
static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 22:
* Save the MFC_CSR_TSQ register
* in the LSCSA.
*/
csa->priv2.spu_tag_status_query_RW =
in_be64(&priv2->spu_tag_status_query_RW);
}
static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 23:
* Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
* registers in the CSA.
*/
csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
}
static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 24:
* Save the MFC_CSR_ATO register in
* the CSA.
*/
csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
}
static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 25:
* Save the MFC_TCLASS_ID register in
* the CSA.
*/
csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
}
static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 26:
* Restore, Step 23.
* Write the MFC_TCLASS_ID register with
* the value 0x10000000.
*/
spu_mfc_tclass_id_set(spu, 0x10000000);
eieio();
}
static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 27:
* Restore, Step 14.
* Write MFC_CNTL[Pc]=1 (purge queue).
*/
out_be64(&priv2->mfc_control_RW,
MFC_CNTL_PURGE_DMA_REQUEST |
MFC_CNTL_SUSPEND_MASK);
eieio();
}
static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 28:
* Poll MFC_CNTL[Ps] until value '11' is read
* (purge complete).
*/
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
MFC_CNTL_PURGE_DMA_COMPLETE);
}
static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 30:
* Restore, Step 18:
* Write MFC_SR1 with MFC_SR1[D=0,S=1] and
* MFC_SR1[TL,R,Pr,T] set correctly for the
* OS specific environment.
*
* Implementation note: The SPU-side code
* for save/restore is privileged, so the
* MFC_SR1[Pr] bit is not set.
*
*/
spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
MFC_STATE1_RELOCATE_MASK |
MFC_STATE1_BUS_TLBIE_MASK));
}
static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 31:
* Save SPU_NPC in the CSA.
*/
csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
}
static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 32:
* Save SPU_PrivCntl in the CSA.
*/
csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
}
static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 33:
* Restore, Step 16:
* Write SPU_PrivCntl[S,Le,A] fields reset to 0.
*/
out_be64(&priv2->spu_privcntl_RW, 0UL);
eieio();
}
static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 34:
* Save SPU_LSLR in the CSA.
*/
csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
}
static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 35:
* Restore, Step 17.
* Reset SPU_LSLR.
*/
out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
eieio();
}
static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 36:
* Save SPU_Cfg in the CSA.
*/
csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
}
static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 37:
* Save PM_Trace_Tag_Wait_Mask in the CSA.
* Not performed by this implementation.
*/
}
static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 38:
* Save RA_GROUP_ID register and the
* RA_ENABLE reigster in the CSA.
*/
csa->priv1.resource_allocation_groupID_RW =
spu_resource_allocation_groupID_get(spu);
csa->priv1.resource_allocation_enable_RW =
spu_resource_allocation_enable_get(spu);
}
static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 39:
* Save MB_Stat register in the CSA.
*/
csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
}
static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 40:
* Save the PPU_MB register in the CSA.
*/
csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
}
static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 41:
* Save the PPUINT_MB register in the CSA.
*/
csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
}
static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
int i;
/* Save, Step 42:
*/
/* Save CH 1, without channel count */
out_be64(&priv2->spu_chnlcntptr_RW, 1);
csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
/* Save the following CH: [0,3,4,24,25,27] */
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
out_be64(&priv2->spu_chnldata_RW, 0UL);
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
eieio();
}
}
static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
int i;
/* Save, Step 43:
* Save SPU Read Mailbox Channel.
*/
out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
eieio();
csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
for (i = 0; i < 4; i++) {
csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
}
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
eieio();
}
static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 44:
* Save MFC_CMD Channel.
*/
out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
eieio();
csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
eieio();
}
static inline void reset_ch(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
u64 idx;
int i;
/* Save, Step 45:
* Reset the following CH: [21, 23, 28, 30]
*/
for (i = 0; i < 4; i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
eieio();
}
}
static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Save, Step 46:
* Restore, Step 25.
* Write MFC_CNTL[Sc]=0 (resume queue processing).
*/
out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
}
static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
unsigned int *code, int code_size)
{
/* Save, Step 47:
* Restore, Step 30.
* If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
* register, then initialize SLB_VSID and SLB_ESID
* to provide access to SPU context save code and
* LSCSA.
*
* This implementation places both the context
* switch code and LSCSA in kernel address space.
*
* Further this implementation assumes that the
* MFC_SR1[R]=1 (in other words, assume that
* translation is desired by OS environment).
*/
spu_invalidate_slbs(spu);
spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
}
static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
{
/* Save, Step 48:
* Restore, Step 23.
* Change the software context switch pending flag
* to context switch active. This implementation does
* not uses a switch active flag.
*
* Now that we have saved the mfc in the csa, we can add in the
* restart command if an exception occurred.
*/
if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
mb();
}
static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
{
unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
CLASS1_ENABLE_STORAGE_FAULT_INTR;
/* Save, Step 49:
* Restore, Step 22:
* Reset and then enable interrupts, as
* needed by OS.
*
* This implementation enables only class1
* (translation) interrupts.
*/
spin_lock_irq(&spu->register_lock);
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
spu_int_mask_set(spu, 0, 0ul);
spu_int_mask_set(spu, 1, class1_mask);
spu_int_mask_set(spu, 2, 0ul);
spin_unlock_irq(&spu->register_lock);
}
static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
unsigned int ls_offset, unsigned int size,
unsigned int tag, unsigned int rclass,
unsigned int cmd)
{
struct spu_problem __iomem *prob = spu->problem;
union mfc_tag_size_class_cmd command;
unsigned int transfer_size;
volatile unsigned int status = 0x0;
while (size > 0) {
transfer_size =
(size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
command.u.mfc_size = transfer_size;
command.u.mfc_tag = tag;
command.u.mfc_rclassid = rclass;
command.u.mfc_cmd = cmd;
do {
out_be32(&prob->mfc_lsa_W, ls_offset);
out_be64(&prob->mfc_ea_W, ea);
out_be64(&prob->mfc_union_W.all64, command.all64);
status =
in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
if (unlikely(status & 0x2)) {
cpu_relax();
}
} while (status & 0x3);
size -= transfer_size;
ea += transfer_size;
ls_offset += transfer_size;
}
return 0;
}
static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
{
unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
unsigned int ls_offset = 0x0;
unsigned int size = 16384;
unsigned int tag = 0;
unsigned int rclass = 0;
unsigned int cmd = MFC_PUT_CMD;
/* Save, Step 50:
* Issue a DMA command to copy the first 16K bytes
* of local storage to the CSA.
*/
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
}
static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 51:
* Restore, Step 31.
* Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
* point address of context save code in local
* storage.
*
* This implementation uses SPU-side save/restore
* programs with entry points at LSA of 0.
*/
out_be32(&prob->spu_npc_RW, 0);
eieio();
}
static inline void set_signot1(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
union {
u64 ull;
u32 ui[2];
} addr64;
/* Save, Step 52:
* Restore, Step 32:
* Write SPU_Sig_Notify_1 register with upper 32-bits
* of the CSA.LSCSA effective address.
*/
addr64.ull = (u64) csa->lscsa;
out_be32(&prob->signal_notify1, addr64.ui[0]);
eieio();
}
static inline void set_signot2(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
union {
u64 ull;
u32 ui[2];
} addr64;
/* Save, Step 53:
* Restore, Step 33:
* Write SPU_Sig_Notify_2 register with lower 32-bits
* of the CSA.LSCSA effective address.
*/
addr64.ull = (u64) csa->lscsa;
out_be32(&prob->signal_notify2, addr64.ui[1]);
eieio();
}
static inline void send_save_code(struct spu_state *csa, struct spu *spu)
{
unsigned long addr = (unsigned long)&spu_save_code[0];
unsigned int ls_offset = 0x0;
unsigned int size = sizeof(spu_save_code);
unsigned int tag = 0;
unsigned int rclass = 0;
unsigned int cmd = MFC_GETFS_CMD;
/* Save, Step 54:
* Issue a DMA command to copy context save code
* to local storage and start SPU.
*/
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
}
static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Save, Step 55:
* Restore, Step 38.
* Write PPU_QueryMask=1 (enable Tag Group 0)
* and issue eieio instruction.
*/
out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
eieio();
}
static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 mask = MFC_TAGID_TO_TAGMASK(0);
unsigned long flags;
/* Save, Step 56:
* Restore, Step 39.
* Restore, Step 39.
* Restore, Step 46.
* Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
* or write PPU_QueryType[TS]=01 and wait for Tag Group
* Complete Interrupt. Write INT_Stat_Class0 or
* INT_Stat_Class2 with value of 'handled'.
*/
POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
local_irq_save(flags);
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
local_irq_restore(flags);
}
static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
unsigned long flags;
/* Save, Step 57:
* Restore, Step 40.
* Poll until SPU_Status[R]=0 or wait for SPU Class 0
* or SPU Class 2 interrupt. Write INT_Stat_class0
* or INT_Stat_class2 with value of handled.
*/
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
local_irq_save(flags);
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
local_irq_restore(flags);
}
static inline int check_save_status(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 complete;
/* Save, Step 54:
* If SPU_Status[P]=1 and SPU_Status[SC] = "success",
* context save succeeded, otherwise context save
* failed.
*/
complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
SPU_STATUS_STOPPED_BY_STOP);
return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
}
static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 4:
* If required, notify the "using application" that
* the SPU task has been terminated. TBD.
*/
}
static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 7:
* Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
* the queue and halt the decrementer.
*/
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
MFC_CNTL_DECREMENTER_HALTED);
eieio();
}
static inline void wait_suspend_mfc_complete(struct spu_state *csa,
struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 8:
* Restore, Step 47.
* Poll MFC_CNTL[Ss] until 11 is returned.
*/
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
MFC_CNTL_SUSPEND_COMPLETE);
}
static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 9:
* If SPU_Status[R]=1, stop SPU execution
* and wait for stop to complete.
*
* Returns 1 if SPU_Status[R]=1 on entry.
* 0 otherwise
*/
if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
if (in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_EXIT_STATUS) {
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
if ((in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_LOAD_STATUS)
|| (in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_STATE)) {
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
out_be32(&prob->spu_runcntl_RW, 0x2);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
if (in_be32(&prob->spu_status_R) &
SPU_STATUS_WAITING_FOR_CHANNEL) {
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
return 1;
}
return 0;
}
static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 10:
* If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
* release SPU from isolate state.
*/
if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
if (in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_EXIT_STATUS) {
spu_mfc_sr1_set(spu,
MFC_STATE1_MASTER_RUN_CONTROL_MASK);
eieio();
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
if ((in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_LOAD_STATUS)
|| (in_be32(&prob->spu_status_R) &
SPU_STATUS_ISOLATED_STATE)) {
spu_mfc_sr1_set(spu,
MFC_STATE1_MASTER_RUN_CONTROL_MASK);
eieio();
out_be32(&prob->spu_runcntl_RW, 0x2);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
}
}
static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
u64 idx;
int i;
/* Restore, Step 20:
*/
/* Reset CH 1 */
out_be64(&priv2->spu_chnlcntptr_RW, 1);
out_be64(&priv2->spu_chnldata_RW, 0UL);
/* Reset the following CH: [0,3,4,24,25,27] */
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
out_be64(&priv2->spu_chnldata_RW, 0UL);
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
eieio();
}
}
static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
u64 idx;
int i;
/* Restore, Step 21:
* Reset the following CH: [21, 23, 28, 29, 30]
*/
for (i = 0; i < 5; i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
eieio();
}
}
static inline void setup_spu_status_part1(struct spu_state *csa,
struct spu *spu)
{
u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
u32 status_I = SPU_STATUS_INVALID_INSTR;
u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
u32 status_S = SPU_STATUS_SINGLE_STEP;
u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
u32 status_code;
/* Restore, Step 27:
* If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
* instruction sequence to the end of the SPU based restore
* code (after the "context restored" stop and signal) to
* restore the correct SPU status.
*
* NOTE: Rather than modifying the SPU executable, we
* instead add a new 'stopped_status' field to the
* LSCSA. The SPU-side restore reads this field and
* takes the appropriate action when exiting.
*/
status_code =
(csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
/* SPU_Status[P,I]=1 - Illegal Instruction followed
* by Stop and Signal instruction, followed by 'br -4'.
*
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
csa->lscsa->stopped_status.slot[1] = status_code;
} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
/* SPU_Status[P,H]=1 - Halt Conditional, followed
* by Stop and Signal instruction, followed by
* 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
csa->lscsa->stopped_status.slot[1] = status_code;
} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
/* SPU_Status[S,P]=1 - Stop and Signal instruction
* followed by 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
csa->lscsa->stopped_status.slot[1] = status_code;
} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
/* SPU_Status[S,I]=1 - Illegal instruction followed
* by 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
csa->lscsa->stopped_status.slot[1] = status_code;
} else if ((csa->prob.spu_status_R & status_P) == status_P) {
/* SPU_Status[P]=1 - Stop and Signal instruction
* followed by 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
csa->lscsa->stopped_status.slot[1] = status_code;
} else if ((csa->prob.spu_status_R & status_H) == status_H) {
/* SPU_Status[H]=1 - Halt Conditional, followed
* by 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
} else if ((csa->prob.spu_status_R & status_S) == status_S) {
/* SPU_Status[S]=1 - Two nop instructions.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
} else if ((csa->prob.spu_status_R & status_I) == status_I) {
/* SPU_Status[I]=1 - Illegal instruction followed
* by 'br -4'.
*/
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
}
}
static inline void setup_spu_status_part2(struct spu_state *csa,
struct spu *spu)
{
u32 mask;
/* Restore, Step 28:
* If the CSA.SPU_Status[I,S,H,P,R]=0 then
* add a 'br *' instruction to the end of
* the SPU based restore code.
*
* NOTE: Rather than modifying the SPU executable, we
* instead add a new 'stopped_status' field to the
* LSCSA. The SPU-side restore reads this field and
* takes the appropriate action when exiting.
*/
mask = SPU_STATUS_INVALID_INSTR |
SPU_STATUS_SINGLE_STEP |
SPU_STATUS_STOPPED_BY_HALT |
SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
if (!(csa->prob.spu_status_R & mask)) {
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
}
}
static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 29:
* Restore RA_GROUP_ID register and the
* RA_ENABLE reigster from the CSA.
*/
spu_resource_allocation_groupID_set(spu,
csa->priv1.resource_allocation_groupID_RW);
spu_resource_allocation_enable_set(spu,
csa->priv1.resource_allocation_enable_RW);
}
static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
{
unsigned long addr = (unsigned long)&spu_restore_code[0];
unsigned int ls_offset = 0x0;
unsigned int size = sizeof(spu_restore_code);
unsigned int tag = 0;
unsigned int rclass = 0;
unsigned int cmd = MFC_GETFS_CMD;
/* Restore, Step 37:
* Issue MFC DMA command to copy context
* restore code to local storage.
*/
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
}
static inline void setup_decr(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 34:
* If CSA.MFC_CNTL[Ds]=1 (decrementer was
* running) then adjust decrementer, set
* decrementer running status in LSCSA,
* and set decrementer "wrapped" status
* in LSCSA.
*/
if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
cycles_t resume_time = get_cycles();
cycles_t delta_time = resume_time - csa->suspend_time;
csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
if (csa->lscsa->decr.slot[0] < delta_time) {
csa->lscsa->decr_status.slot[0] |=
SPU_DECR_STATUS_WRAPPED;
}
csa->lscsa->decr.slot[0] -= delta_time;
} else {
csa->lscsa->decr_status.slot[0] = 0;
}
}
static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 35:
* Copy the CSA.PU_MB data into the LSCSA.
*/
csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
}
static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 36:
* Copy the CSA.PUINT_MB data into the LSCSA.
*/
csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
}
static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 complete;
/* Restore, Step 40:
* If SPU_Status[P]=1 and SPU_Status[SC] = "success",
* context restore succeeded, otherwise context restore
* failed.
*/
complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
SPU_STATUS_STOPPED_BY_STOP);
return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
}
static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 41:
* Restore SPU_PrivCntl from the CSA.
*/
out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
eieio();
}
static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 mask;
/* Restore, Step 42:
* If any CSA.SPU_Status[I,S,H,P]=1, then
* restore the error or single step state.
*/
mask = SPU_STATUS_INVALID_INSTR |
SPU_STATUS_SINGLE_STEP |
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
if (csa->prob.spu_status_R & mask) {
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
}
static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
u32 mask;
/* Restore, Step 43:
* If all CSA.SPU_Status[I,S,H,P,R]=0 then write
* SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
* then write '00' to SPU_RunCntl[R0R1] and wait
* for SPU_Status[R]=0.
*/
mask = SPU_STATUS_INVALID_INSTR |
SPU_STATUS_SINGLE_STEP |
SPU_STATUS_STOPPED_BY_HALT |
SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
if (!(csa->prob.spu_status_R & mask)) {
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
eieio();
POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
eieio();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
SPU_STATUS_RUNNING);
}
}
static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
{
unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
unsigned int ls_offset = 0x0;
unsigned int size = 16384;
unsigned int tag = 0;
unsigned int rclass = 0;
unsigned int cmd = MFC_GET_CMD;
/* Restore, Step 44:
* Issue a DMA command to restore the first
* 16kb of local storage from CSA.
*/
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
}
static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 47.
* Write MFC_Cntl[Sc,Sm]='1','0' to suspend
* the queue.
*/
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
eieio();
}
static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 49:
* Write INT_MASK_class0 with value of 0.
* Write INT_MASK_class1 with value of 0.
* Write INT_MASK_class2 with value of 0.
* Write INT_STAT_class0 with value of -1.
* Write INT_STAT_class1 with value of -1.
* Write INT_STAT_class2 with value of -1.
*/
spin_lock_irq(&spu->register_lock);
spu_int_mask_set(spu, 0, 0ul);
spu_int_mask_set(spu, 1, 0ul);
spu_int_mask_set(spu, 2, 0ul);
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
spin_unlock_irq(&spu->register_lock);
}
static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
int i;
/* Restore, Step 50:
* If MFC_Cntl[Se]!=0 then restore
* MFC command queues.
*/
if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
for (i = 0; i < 8; i++) {
out_be64(&priv2->puq[i].mfc_cq_data0_RW,
csa->priv2.puq[i].mfc_cq_data0_RW);
out_be64(&priv2->puq[i].mfc_cq_data1_RW,
csa->priv2.puq[i].mfc_cq_data1_RW);
out_be64(&priv2->puq[i].mfc_cq_data2_RW,
csa->priv2.puq[i].mfc_cq_data2_RW);
out_be64(&priv2->puq[i].mfc_cq_data3_RW,
csa->priv2.puq[i].mfc_cq_data3_RW);
}
for (i = 0; i < 16; i++) {
out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
csa->priv2.spuq[i].mfc_cq_data0_RW);
out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
csa->priv2.spuq[i].mfc_cq_data1_RW);
out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
csa->priv2.spuq[i].mfc_cq_data2_RW);
out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
csa->priv2.spuq[i].mfc_cq_data3_RW);
}
}
eieio();
}
static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 51:
* Restore the PPU_QueryMask register from CSA.
*/
out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
eieio();
}
static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 52:
* Restore the PPU_QueryType register from CSA.
*/
out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
eieio();
}
static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 53:
* Restore the MFC_CSR_TSQ register from CSA.
*/
out_be64(&priv2->spu_tag_status_query_RW,
csa->priv2.spu_tag_status_query_RW);
eieio();
}
static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 54:
* Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
* registers from CSA.
*/
out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
eieio();
}
static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 55:
* Restore the MFC_CSR_ATO register from CSA.
*/
out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
}
static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 56:
* Restore the MFC_TCLASS_ID register from CSA.
*/
spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
eieio();
}
static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
{
u64 ch0_cnt, ch0_data;
u64 ch1_data;
/* Restore, Step 57:
* Set the Lock Line Reservation Lost Event by:
* 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
* 2. If CSA.SPU_Channel_0_Count=0 and
* CSA.SPU_Wr_Event_Mask[Lr]=1 and
* CSA.SPU_Event_Status[Lr]=0 then set
* CSA.SPU_Event_Status_Count=1.
*/
ch0_cnt = csa->spu_chnlcnt_RW[0];
ch0_data = csa->spu_chnldata_RW[0];
ch1_data = csa->spu_chnldata_RW[1];
csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
(ch1_data & MFC_LLR_LOST_EVENT)) {
csa->spu_chnlcnt_RW[0] = 1;
}
}
static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 58:
* If the status of the CSA software decrementer
* "wrapped" flag is set, OR in a '1' to
* CSA.SPU_Event_Status[Tm].
*/
if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
return;
if ((csa->spu_chnlcnt_RW[0] == 0) &&
(csa->spu_chnldata_RW[1] & 0x20) &&
!(csa->spu_chnldata_RW[0] & 0x20))
csa->spu_chnlcnt_RW[0] = 1;
csa->spu_chnldata_RW[0] |= 0x20;
}
static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
int i;
/* Restore, Step 59:
* Restore the following CH: [0,3,4,24,25,27]
*/
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
eieio();
}
}
static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
u64 ch_indices[3] = { 9UL, 21UL, 23UL };
u64 ch_counts[3] = { 1UL, 16UL, 1UL };
u64 idx;
int i;
/* Restore, Step 60:
* Restore the following CH: [9,21,23].
*/
ch_counts[0] = 1UL;
ch_counts[1] = csa->spu_chnlcnt_RW[21];
ch_counts[2] = 1UL;
for (i = 0; i < 3; i++) {
idx = ch_indices[i];
out_be64(&priv2->spu_chnlcntptr_RW, idx);
eieio();
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
eieio();
}
}
static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 61:
* Restore the SPU_LSLR register from CSA.
*/
out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
eieio();
}
static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 62:
* Restore the SPU_Cfg register from CSA.
*/
out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
eieio();
}
static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 63:
* Restore PM_Trace_Tag_Wait_Mask from CSA.
* Not performed by this implementation.
*/
}
static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 64:
* Restore SPU_NPC from CSA.
*/
out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
eieio();
}
static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
int i;
/* Restore, Step 65:
* Restore MFC_RdSPU_MB from CSA.
*/
out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
eieio();
out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
for (i = 0; i < 4; i++) {
out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
}
eieio();
}
static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 66:
* If CSA.MB_Stat[P]=0 (mailbox empty) then
* read from the PPU_MB register.
*/
if ((csa->prob.mb_stat_R & 0xFF) == 0) {
in_be32(&prob->pu_mb_R);
eieio();
}
}
static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 66:
* If CSA.MB_Stat[I]=0 (mailbox empty) then
* read from the PPUINT_MB register.
*/
if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
in_be64(&priv2->puint_mb_R);
eieio();
spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
eieio();
}
}
static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 69:
* Restore the MFC_SR1 register from CSA.
*/
spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
eieio();
}
static inline void set_int_route(struct spu_state *csa, struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
spu_cpu_affinity_set(spu, ctx->last_ran);
}
static inline void restore_other_spu_access(struct spu_state *csa,
struct spu *spu)
{
/* Restore, Step 70:
* Restore other SPU mappings to this SPU. TBD.
*/
}
static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
/* Restore, Step 71:
* If CSA.SPU_Status[R]=1 then write
* SPU_RunCntl[R0R1]='01'.
*/
if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
eieio();
}
}
static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Restore, Step 72:
* Restore the MFC_CNTL register for the CSA.
*/
out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
eieio();
/*
* The queue is put back into the same state that was evident prior to
* the context switch. The suspend flag is added to the saved state in
* the csa, if the operational state was suspending or suspended. In
* this case, the code that suspended the mfc is responsible for
* continuing it. Note that SPE faults do not change the operational
* state of the spu.
*/
}
static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 73:
* Enable user-space access (if provided) to this
* SPU by mapping the virtual pages assigned to
* the SPU memory-mapped I/O (MMIO) for problem
* state. TBD.
*/
}
static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 74:
* Reset the "context switch active" flag.
* Not performed by this implementation.
*/
}
static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
{
/* Restore, Step 75:
* Re-enable SPU interrupts.
*/
spin_lock_irq(&spu->register_lock);
spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
spin_unlock_irq(&spu->register_lock);
}
static int quiece_spu(struct spu_state *prev, struct spu *spu)
{
/*
* Combined steps 2-18 of SPU context save sequence, which
* quiesce the SPU state (disable SPU execution, MFC command
* queues, decrementer, SPU interrupts, etc.).
*
* Returns 0 on success.
* 2 if failed step 2.
* 6 if failed step 6.
*/
if (check_spu_isolate(prev, spu)) { /* Step 2. */
return 2;
}
disable_interrupts(prev, spu); /* Step 3. */
set_watchdog_timer(prev, spu); /* Step 4. */
inhibit_user_access(prev, spu); /* Step 5. */
if (check_spu_isolate(prev, spu)) { /* Step 6. */
return 6;
}
set_switch_pending(prev, spu); /* Step 7. */
save_mfc_cntl(prev, spu); /* Step 8. */
save_spu_runcntl(prev, spu); /* Step 9. */
save_mfc_sr1(prev, spu); /* Step 10. */
save_spu_status(prev, spu); /* Step 11. */
save_mfc_stopped_status(prev, spu); /* Step 12. */
halt_mfc_decr(prev, spu); /* Step 13. */
save_timebase(prev, spu); /* Step 14. */
remove_other_spu_access(prev, spu); /* Step 15. */
do_mfc_mssync(prev, spu); /* Step 16. */
issue_mfc_tlbie(prev, spu); /* Step 17. */
handle_pending_interrupts(prev, spu); /* Step 18. */
return 0;
}
static void save_csa(struct spu_state *prev, struct spu *spu)
{
/*
* Combine steps 19-44 of SPU context save sequence, which
* save regions of the privileged & problem state areas.
*/
save_mfc_queues(prev, spu); /* Step 19. */
save_ppu_querymask(prev, spu); /* Step 20. */
save_ppu_querytype(prev, spu); /* Step 21. */
save_ppu_tagstatus(prev, spu); /* NEW. */
save_mfc_csr_tsq(prev, spu); /* Step 22. */
save_mfc_csr_cmd(prev, spu); /* Step 23. */
save_mfc_csr_ato(prev, spu); /* Step 24. */
save_mfc_tclass_id(prev, spu); /* Step 25. */
set_mfc_tclass_id(prev, spu); /* Step 26. */
save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
purge_mfc_queue(prev, spu); /* Step 27. */
wait_purge_complete(prev, spu); /* Step 28. */
setup_mfc_sr1(prev, spu); /* Step 30. */
save_spu_npc(prev, spu); /* Step 31. */
save_spu_privcntl(prev, spu); /* Step 32. */
reset_spu_privcntl(prev, spu); /* Step 33. */
save_spu_lslr(prev, spu); /* Step 34. */
reset_spu_lslr(prev, spu); /* Step 35. */
save_spu_cfg(prev, spu); /* Step 36. */
save_pm_trace(prev, spu); /* Step 37. */
save_mfc_rag(prev, spu); /* Step 38. */
save_ppu_mb_stat(prev, spu); /* Step 39. */
save_ppu_mb(prev, spu); /* Step 40. */
save_ppuint_mb(prev, spu); /* Step 41. */
save_ch_part1(prev, spu); /* Step 42. */
save_spu_mb(prev, spu); /* Step 43. */
reset_ch(prev, spu); /* Step 45. */
}
static void save_lscsa(struct spu_state *prev, struct spu *spu)
{
/*
* Perform steps 46-57 of SPU context save sequence,
* which save regions of the local store and register
* file.
*/
resume_mfc_queue(prev, spu); /* Step 46. */
/* Step 47. */
setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
set_switch_active(prev, spu); /* Step 48. */
enable_interrupts(prev, spu); /* Step 49. */
save_ls_16kb(prev, spu); /* Step 50. */
set_spu_npc(prev, spu); /* Step 51. */
set_signot1(prev, spu); /* Step 52. */
set_signot2(prev, spu); /* Step 53. */
send_save_code(prev, spu); /* Step 54. */
set_ppu_querymask(prev, spu); /* Step 55. */
wait_tag_complete(prev, spu); /* Step 56. */
wait_spu_stopped(prev, spu); /* Step 57. */
}
static void force_spu_isolate_exit(struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
struct spu_priv2 __iomem *priv2 = spu->priv2;
/* Stop SPE execution and wait for completion. */
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
iobarrier_rw();
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
/* Restart SPE master runcntl. */
spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
iobarrier_w();
/* Initiate isolate exit request and wait for completion. */
out_be64(&priv2->spu_privcntl_RW, 4LL);
iobarrier_w();
out_be32(&prob->spu_runcntl_RW, 2);
iobarrier_rw();
POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
& SPU_STATUS_STOPPED_BY_STOP));
/* Reset load request to normal. */
out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
iobarrier_w();
}
/**
* stop_spu_isolate
* Check SPU run-control state and force isolated
* exit function as necessary.
*/
static void stop_spu_isolate(struct spu *spu)
{
struct spu_problem __iomem *prob = spu->problem;
if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
/* The SPU is in isolated state; the only way
* to get it out is to perform an isolated
* exit (clean) operation.
*/
force_spu_isolate_exit(spu);
}
}
static void harvest(struct spu_state *prev, struct spu *spu)
{
/*
* Perform steps 2-25 of SPU context restore sequence,
* which resets an SPU either after a failed save, or
* when using SPU for first time.
*/
disable_interrupts(prev, spu); /* Step 2. */
inhibit_user_access(prev, spu); /* Step 3. */
terminate_spu_app(prev, spu); /* Step 4. */
set_switch_pending(prev, spu); /* Step 5. */
stop_spu_isolate(spu); /* NEW. */
remove_other_spu_access(prev, spu); /* Step 6. */
suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
wait_suspend_mfc_complete(prev, spu); /* Step 8. */
if (!suspend_spe(prev, spu)) /* Step 9. */
clear_spu_status(prev, spu); /* Step 10. */
do_mfc_mssync(prev, spu); /* Step 11. */
issue_mfc_tlbie(prev, spu); /* Step 12. */
handle_pending_interrupts(prev, spu); /* Step 13. */
purge_mfc_queue(prev, spu); /* Step 14. */
wait_purge_complete(prev, spu); /* Step 15. */
reset_spu_privcntl(prev, spu); /* Step 16. */
reset_spu_lslr(prev, spu); /* Step 17. */
setup_mfc_sr1(prev, spu); /* Step 18. */
spu_invalidate_slbs(spu); /* Step 19. */
reset_ch_part1(prev, spu); /* Step 20. */
reset_ch_part2(prev, spu); /* Step 21. */
enable_interrupts(prev, spu); /* Step 22. */
set_switch_active(prev, spu); /* Step 23. */
set_mfc_tclass_id(prev, spu); /* Step 24. */
resume_mfc_queue(prev, spu); /* Step 25. */
}
static void restore_lscsa(struct spu_state *next, struct spu *spu)
{
/*
* Perform steps 26-40 of SPU context restore sequence,
* which restores regions of the local store and register
* file.
*/
set_watchdog_timer(next, spu); /* Step 26. */
setup_spu_status_part1(next, spu); /* Step 27. */
setup_spu_status_part2(next, spu); /* Step 28. */
restore_mfc_rag(next, spu); /* Step 29. */
/* Step 30. */
setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
set_spu_npc(next, spu); /* Step 31. */
set_signot1(next, spu); /* Step 32. */
set_signot2(next, spu); /* Step 33. */
setup_decr(next, spu); /* Step 34. */
setup_ppu_mb(next, spu); /* Step 35. */
setup_ppuint_mb(next, spu); /* Step 36. */
send_restore_code(next, spu); /* Step 37. */
set_ppu_querymask(next, spu); /* Step 38. */
wait_tag_complete(next, spu); /* Step 39. */
wait_spu_stopped(next, spu); /* Step 40. */
}
static void restore_csa(struct spu_state *next, struct spu *spu)
{
/*
* Combine steps 41-76 of SPU context restore sequence, which
* restore regions of the privileged & problem state areas.
*/
restore_spu_privcntl(next, spu); /* Step 41. */
restore_status_part1(next, spu); /* Step 42. */
restore_status_part2(next, spu); /* Step 43. */
restore_ls_16kb(next, spu); /* Step 44. */
wait_tag_complete(next, spu); /* Step 45. */
suspend_mfc(next, spu); /* Step 46. */
wait_suspend_mfc_complete(next, spu); /* Step 47. */
issue_mfc_tlbie(next, spu); /* Step 48. */
clear_interrupts(next, spu); /* Step 49. */
restore_mfc_queues(next, spu); /* Step 50. */
restore_ppu_querymask(next, spu); /* Step 51. */
restore_ppu_querytype(next, spu); /* Step 52. */
restore_mfc_csr_tsq(next, spu); /* Step 53. */
restore_mfc_csr_cmd(next, spu); /* Step 54. */
restore_mfc_csr_ato(next, spu); /* Step 55. */
restore_mfc_tclass_id(next, spu); /* Step 56. */
set_llr_event(next, spu); /* Step 57. */
restore_decr_wrapped(next, spu); /* Step 58. */
restore_ch_part1(next, spu); /* Step 59. */
restore_ch_part2(next, spu); /* Step 60. */
restore_spu_lslr(next, spu); /* Step 61. */
restore_spu_cfg(next, spu); /* Step 62. */
restore_pm_trace(next, spu); /* Step 63. */
restore_spu_npc(next, spu); /* Step 64. */
restore_spu_mb(next, spu); /* Step 65. */
check_ppu_mb_stat(next, spu); /* Step 66. */
check_ppuint_mb_stat(next, spu); /* Step 67. */
spu_invalidate_slbs(spu); /* Modified Step 68. */
restore_mfc_sr1(next, spu); /* Step 69. */
set_int_route(next, spu); /* NEW */
restore_other_spu_access(next, spu); /* Step 70. */
restore_spu_runcntl(next, spu); /* Step 71. */
restore_mfc_cntl(next, spu); /* Step 72. */
enable_user_access(next, spu); /* Step 73. */
reset_switch_active(next, spu); /* Step 74. */
reenable_interrupts(next, spu); /* Step 75. */
}
static int __do_spu_save(struct spu_state *prev, struct spu *spu)
{
int rc;
/*
* SPU context save can be broken into three phases:
*
* (a) quiesce [steps 2-16].
* (b) save of CSA, performed by PPE [steps 17-42]
* (c) save of LSCSA, mostly performed by SPU [steps 43-52].
*
* Returns 0 on success.
* 2,6 if failed to quiece SPU
* 53 if SPU-side of save failed.
*/
rc = quiece_spu(prev, spu); /* Steps 2-16. */
switch (rc) {
default:
case 2:
case 6:
harvest(prev, spu);
return rc;
break;
case 0:
break;
}
save_csa(prev, spu); /* Steps 17-43. */
save_lscsa(prev, spu); /* Steps 44-53. */
return check_save_status(prev, spu); /* Step 54. */
}
static int __do_spu_restore(struct spu_state *next, struct spu *spu)
{
int rc;
/*
* SPU context restore can be broken into three phases:
*
* (a) harvest (or reset) SPU [steps 2-24].
* (b) restore LSCSA [steps 25-40], mostly performed by SPU.
* (c) restore CSA [steps 41-76], performed by PPE.
*
* The 'harvest' step is not performed here, but rather
* as needed below.
*/
restore_lscsa(next, spu); /* Steps 24-39. */
rc = check_restore_status(next, spu); /* Step 40. */
switch (rc) {
default:
/* Failed. Return now. */
return rc;
break;
case 0:
/* Fall through to next step. */
break;
}
restore_csa(next, spu);
return 0;
}
/**
* spu_save - SPU context save, with locking.
* @prev: pointer to SPU context save area, to be saved.
* @spu: pointer to SPU iomem structure.
*
* Acquire locks, perform the save operation then return.
*/
int spu_save(struct spu_state *prev, struct spu *spu)
{
int rc;
acquire_spu_lock(spu); /* Step 1. */
rc = __do_spu_save(prev, spu); /* Steps 2-53. */
release_spu_lock(spu);
if (rc != 0 && rc != 2 && rc != 6) {
panic("%s failed on SPU[%d], rc=%d.\n",
__func__, spu->number, rc);
}
return 0;
}
EXPORT_SYMBOL_GPL(spu_save);
/**
* spu_restore - SPU context restore, with harvest and locking.
* @new: pointer to SPU context save area, to be restored.
* @spu: pointer to SPU iomem structure.
*
* Perform harvest + restore, as we may not be coming
* from a previous successful save operation, and the
* hardware state is unknown.
*/
int spu_restore(struct spu_state *new, struct spu *spu)
{
int rc;
acquire_spu_lock(spu);
harvest(NULL, spu);
spu->slb_replace = 0;
rc = __do_spu_restore(new, spu);
release_spu_lock(spu);
if (rc) {
panic("%s failed on SPU[%d] rc=%d.\n",
__func__, spu->number, rc);
}
return rc;
}
EXPORT_SYMBOL_GPL(spu_restore);
static void init_prob(struct spu_state *csa)
{
csa->spu_chnlcnt_RW[9] = 1;
csa->spu_chnlcnt_RW[21] = 16;
csa->spu_chnlcnt_RW[23] = 1;
csa->spu_chnlcnt_RW[28] = 1;
csa->spu_chnlcnt_RW[30] = 1;
csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
csa->prob.mb_stat_R = 0x000400;
}
static void init_priv1(struct spu_state *csa)
{
/* Enable decode, relocate, tlbie response, master runcntl. */
csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
MFC_STATE1_MASTER_RUN_CONTROL_MASK |
MFC_STATE1_PROBLEM_STATE_MASK |
MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
/* Enable OS-specific set of interrupts. */
csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
CLASS0_ENABLE_SPU_ERROR_INTR;
csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
CLASS1_ENABLE_STORAGE_FAULT_INTR;
csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
CLASS2_ENABLE_SPU_HALT_INTR |
CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
}
static void init_priv2(struct spu_state *csa)
{
csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
}
/**
* spu_alloc_csa - allocate and initialize an SPU context save area.
*
* Allocate and initialize the contents of an SPU context save area.
* This includes enabling address translation, interrupt masks, etc.,
* as appropriate for the given OS environment.
*
* Note that storage for the 'lscsa' is allocated separately,
* as it is by far the largest of the context save regions,
* and may need to be pinned or otherwise specially aligned.
*/
int spu_init_csa(struct spu_state *csa)
{
int rc;
if (!csa)
return -EINVAL;
memset(csa, 0, sizeof(struct spu_state));
rc = spu_alloc_lscsa(csa);
if (rc)
return rc;
spin_lock_init(&csa->register_lock);
init_prob(csa);
init_priv1(csa);
init_priv2(csa);
return 0;
}
void spu_fini_csa(struct spu_state *csa)
{
spu_free_lscsa(csa);
}