/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2009, 2010 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/cvmx-npei-defs.h>
#include <asm/octeon/cvmx-sli-defs.h>
#include <asm/octeon/cvmx-pexp-defs.h>
#include <asm/octeon/pci-octeon.h>
/*
* Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
* in use.
*/
static u64 msi_free_irq_bitmask[4];
/*
* Each bit in msi_multiple_irq_bitmask tells that the device using
* this bit in msi_free_irq_bitmask is also using the next bit. This
* is used so we can disable all of the MSI interrupts when a device
* uses multiple.
*/
static u64 msi_multiple_irq_bitmask[4];
/*
* This lock controls updates to msi_free_irq_bitmask and
* msi_multiple_irq_bitmask.
*/
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
/*
* Number of MSI IRQs used. This variable is set up in
* the module init time.
*/
static int msi_irq_size;
/**
* arch_setup_msi_irq() - setup MSI IRQs for a device
* @dev: Device requesting MSI interrupts
* @desc: MSI descriptor
*
* Called when a driver requests MSI interrupts instead of the
* legacy INT A-D. This routine will allocate multiple interrupts
* for MSI devices that support them. A device can override this by
* programming the MSI control bits [6:4] before calling
* pci_enable_msi().
*
* Return: %0 on success, non-%0 on error.
*/
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
struct msi_msg msg;
u16 control;
int configured_private_bits;
int request_private_bits;
int irq = 0;
int irq_step;
u64 search_mask;
int index;
if (desc->pci.msi_attrib.is_msix)
return -EINVAL;
/*
* Read the MSI config to figure out how many IRQs this device
* wants. Most devices only want 1, which will give
* configured_private_bits and request_private_bits equal 0.
*/
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
/*
* If the number of private bits has been configured then use
* that value instead of the requested number. This gives the
* driver the chance to override the number of interrupts
* before calling pci_enable_msi().
*/
configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
if (configured_private_bits == 0) {
/* Nothing is configured, so use the hardware requested size */
request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
} else {
/*
* Use the number of configured bits, assuming the
* driver wanted to override the hardware request
* value.
*/
request_private_bits = configured_private_bits;
}
/*
* The PCI 2.3 spec mandates that there are at most 32
* interrupts. If this device asks for more, only give it one.
*/
if (request_private_bits > 5)
request_private_bits = 0;
try_only_one:
/*
* The IRQs have to be aligned on a power of two based on the
* number being requested.
*/
irq_step = 1 << request_private_bits;
/* Mask with one bit for each IRQ */
search_mask = (1 << irq_step) - 1;
/*
* We're going to search msi_free_irq_bitmask_lock for zero
* bits. This represents an MSI interrupt number that isn't in
* use.
*/
spin_lock(&msi_free_irq_bitmask_lock);
for (index = 0; index < msi_irq_size/64; index++) {
for (irq = 0; irq < 64; irq += irq_step) {
if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
msi_free_irq_bitmask[index] |= search_mask << irq;
msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
goto msi_irq_allocated;
}
}
}
msi_irq_allocated:
spin_unlock(&msi_free_irq_bitmask_lock);
/* Make sure the search for available interrupts didn't fail */
if (irq >= 64) {
if (request_private_bits) {
pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
1 << request_private_bits);
request_private_bits = 0;
goto try_only_one;
} else
panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
}
/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
irq += index*64;
irq += OCTEON_IRQ_MSI_BIT0;
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_SMALL:
/* When not using big bar, Bar 0 is based at 128MB */
msg.address_lo =
((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
break;
case OCTEON_DMA_BAR_TYPE_BIG:
/* When using big bar, Bar 0 is based at 0 */
msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
break;
case OCTEON_DMA_BAR_TYPE_PCIE:
/* When using PCIe, Bar 0 is based at 0 */
/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
break;
case OCTEON_DMA_BAR_TYPE_PCIE2:
/* When using PCIe2, Bar 0 is based at 0 */
msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
break;
default:
panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
}
msg.data = irq - OCTEON_IRQ_MSI_BIT0;
/* Update the number of IRQs the device has available to it */
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= request_private_bits << 4;
pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
irq_set_msi_desc(irq, desc);
pci_write_msi_msg(irq, &msg);
return 0;
}
/**
* arch_teardown_msi_irq() - release MSI IRQs for a device
* @irq: The devices first irq number. There may be multiple in sequence.
*
* Called when a device no longer needs its MSI interrupts. All
* MSI interrupts for the device are freed.
*/
void arch_teardown_msi_irq(unsigned int irq)
{
int number_irqs;
u64 bitmask;
int index = 0;
int irq0;
if ((irq < OCTEON_IRQ_MSI_BIT0)
|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
panic("arch_teardown_msi_irq: Attempted to teardown illegal "
"MSI interrupt (%d)", irq);
irq -= OCTEON_IRQ_MSI_BIT0;
index = irq / 64;
irq0 = irq % 64;
/*
* Count the number of IRQs we need to free by looking at the
* msi_multiple_irq_bitmask. Each bit set means that the next
* IRQ is also owned by this device.
*/
number_irqs = 0;
while ((irq0 + number_irqs < 64) &&
(msi_multiple_irq_bitmask[index]
& (1ull << (irq0 + number_irqs))))
number_irqs++;
number_irqs++;
/* Mask with one bit for each IRQ */
bitmask = (1 << number_irqs) - 1;
/* Shift the mask to the correct bit location */
bitmask <<= irq0;
if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
panic("arch_teardown_msi_irq: Attempted to teardown MSI "
"interrupt (%d) not in use", irq);
/* Checks are done, update the in use bitmask */
spin_lock(&msi_free_irq_bitmask_lock);
msi_free_irq_bitmask[index] &= ~bitmask;
msi_multiple_irq_bitmask[index] &= ~bitmask;
spin_unlock(&msi_free_irq_bitmask_lock);
}
static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
static u64 msi_rcv_reg[4];
static u64 mis_ena_reg[4];
static void octeon_irq_msi_enable_pcie(struct irq_data *data)
{
u64 en;
unsigned long flags;
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
int irq_index = msi_number >> 6;
int irq_bit = msi_number & 0x3f;
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
en = cvmx_read_csr(mis_ena_reg[irq_index]);
en |= 1ull << irq_bit;
cvmx_write_csr(mis_ena_reg[irq_index], en);
cvmx_read_csr(mis_ena_reg[irq_index]);
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
}
static void octeon_irq_msi_disable_pcie(struct irq_data *data)
{
u64 en;
unsigned long flags;
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
int irq_index = msi_number >> 6;
int irq_bit = msi_number & 0x3f;
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
en = cvmx_read_csr(mis_ena_reg[irq_index]);
en &= ~(1ull << irq_bit);
cvmx_write_csr(mis_ena_reg[irq_index], en);
cvmx_read_csr(mis_ena_reg[irq_index]);
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
}
static struct irq_chip octeon_irq_chip_msi_pcie = {
.name = "MSI",
.irq_enable = octeon_irq_msi_enable_pcie,
.irq_disable = octeon_irq_msi_disable_pcie,
};
static void octeon_irq_msi_enable_pci(struct irq_data *data)
{
/*
* Octeon PCI doesn't have the ability to mask/unmask MSI
* interrupts individually. Instead of masking/unmasking them
* in groups of 16, we simple assume MSI devices are well
* behaved. MSI interrupts are always enable and the ACK is
* assumed to be enough
*/
}
static void octeon_irq_msi_disable_pci(struct irq_data *data)
{
/* See comment in enable */
}
static struct irq_chip octeon_irq_chip_msi_pci = {
.name = "MSI",
.irq_enable = octeon_irq_msi_enable_pci,
.irq_disable = octeon_irq_msi_disable_pci,
};
/*
* Called by the interrupt handling code when an MSI interrupt
* occurs.
*/
static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
{
int irq;
int bit;
bit = fls64(msi_bits);
if (bit) {
bit--;
/* Acknowledge it first. */
cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
do_IRQ(irq);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#define OCTEON_MSI_INT_HANDLER_X(x) \
static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
{ \
u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
return __octeon_msi_do_interrupt((x), msi_bits); \
}
/*
* Create octeon_msi_interrupt{0-3} function body
*/
OCTEON_MSI_INT_HANDLER_X(0);
OCTEON_MSI_INT_HANDLER_X(1);
OCTEON_MSI_INT_HANDLER_X(2);
OCTEON_MSI_INT_HANDLER_X(3);
/*
* Initializes the MSI interrupt handling code
*/
int __init octeon_msi_initialize(void)
{
int irq;
struct irq_chip *msi;
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
return 0;
} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
msi = &octeon_irq_chip_msi_pcie;
} else {
msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
msi_rcv_reg[1] = INVALID_GENERATE_ADE;
msi_rcv_reg[2] = INVALID_GENERATE_ADE;
msi_rcv_reg[3] = INVALID_GENERATE_ADE;
mis_ena_reg[0] = INVALID_GENERATE_ADE;
mis_ena_reg[1] = INVALID_GENERATE_ADE;
mis_ena_reg[2] = INVALID_GENERATE_ADE;
mis_ena_reg[3] = INVALID_GENERATE_ADE;
msi = &octeon_irq_chip_msi_pci;
}
for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
irq_set_chip_and_handler(irq, msi, handle_simple_irq);
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
0, "MSI[0:63]", octeon_msi_interrupt0))
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
0, "MSI[64:127]", octeon_msi_interrupt1))
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
0, "MSI[127:191]", octeon_msi_interrupt2))
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
0, "MSI[192:255]", octeon_msi_interrupt3))
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
msi_irq_size = 256;
} else if (octeon_is_pci_host()) {
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
0, "MSI[0:15]", octeon_msi_interrupt0))
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
0, "MSI[16:31]", octeon_msi_interrupt0))
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
0, "MSI[32:47]", octeon_msi_interrupt0))
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
0, "MSI[48:63]", octeon_msi_interrupt0))
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
msi_irq_size = 64;
}
return 0;
}
subsys_initcall(octeon_msi_initialize);