/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2023 Intel Corporation
*/
#ifndef __INTEL_UNCORE_H__
#define __INTEL_UNCORE_H__
#include "xe_device.h"
#include "xe_device_types.h"
#include "xe_mmio.h"
static inline struct xe_gt *__compat_uncore_to_gt(struct intel_uncore *uncore)
{
struct xe_device *xe = container_of(uncore, struct xe_device, uncore);
return xe_root_mmio_gt(xe);
}
static inline u32 intel_uncore_read(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_read32(__compat_uncore_to_gt(uncore), reg);
}
static inline u8 intel_uncore_read8(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_read8(__compat_uncore_to_gt(uncore), reg);
}
static inline u16 intel_uncore_read16(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_read16(__compat_uncore_to_gt(uncore), reg);
}
static inline u64
intel_uncore_read64_2x32(struct intel_uncore *uncore,
i915_reg_t i915_lower_reg, i915_reg_t i915_upper_reg)
{
struct xe_reg lower_reg = XE_REG(i915_mmio_reg_offset(i915_lower_reg));
struct xe_reg upper_reg = XE_REG(i915_mmio_reg_offset(i915_upper_reg));
u32 upper, lower, old_upper;
int loop = 0;
upper = xe_mmio_read32(__compat_uncore_to_gt(uncore), upper_reg);
do {
old_upper = upper;
lower = xe_mmio_read32(__compat_uncore_to_gt(uncore), lower_reg);
upper = xe_mmio_read32(__compat_uncore_to_gt(uncore), upper_reg);
} while (upper != old_upper && loop++ < 2);
return (u64)upper << 32 | lower;
}
static inline void intel_uncore_posting_read(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
xe_mmio_read32(__compat_uncore_to_gt(uncore), reg);
}
static inline void intel_uncore_write(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 val)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
xe_mmio_write32(__compat_uncore_to_gt(uncore), reg, val);
}
static inline u32 intel_uncore_rmw(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 clear, u32 set)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_rmw32(__compat_uncore_to_gt(uncore), reg, clear, set);
}
static inline int intel_wait_for_register(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 mask,
u32 value, unsigned int timeout)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_wait32(__compat_uncore_to_gt(uncore), reg, mask, value,
timeout * USEC_PER_MSEC, NULL, false);
}
static inline int intel_wait_for_register_fw(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 mask,
u32 value, unsigned int timeout)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_wait32(__compat_uncore_to_gt(uncore), reg, mask, value,
timeout * USEC_PER_MSEC, NULL, false);
}
static inline int
__intel_wait_for_register(struct intel_uncore *uncore, i915_reg_t i915_reg,
u32 mask, u32 value, unsigned int fast_timeout_us,
unsigned int slow_timeout_ms, u32 *out_value)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_wait32(__compat_uncore_to_gt(uncore), reg, mask, value,
fast_timeout_us + 1000 * slow_timeout_ms,
out_value, false);
}
static inline u32 intel_uncore_read_fw(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_read32(__compat_uncore_to_gt(uncore), reg);
}
static inline void intel_uncore_write_fw(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 val)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
xe_mmio_write32(__compat_uncore_to_gt(uncore), reg, val);
}
static inline u32 intel_uncore_read_notrace(struct intel_uncore *uncore,
i915_reg_t i915_reg)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
return xe_mmio_read32(__compat_uncore_to_gt(uncore), reg);
}
static inline void intel_uncore_write_notrace(struct intel_uncore *uncore,
i915_reg_t i915_reg, u32 val)
{
struct xe_reg reg = XE_REG(i915_mmio_reg_offset(i915_reg));
xe_mmio_write32(__compat_uncore_to_gt(uncore), reg, val);
}
static inline void __iomem *intel_uncore_regs(struct intel_uncore *uncore)
{
struct xe_device *xe = container_of(uncore, struct xe_device, uncore);
return xe_device_get_root_tile(xe)->mmio.regs;
}
/*
* The raw_reg_{read,write} macros are intended as a micro-optimization for
* interrupt handlers so that the pointer indirection on uncore->regs can
* be computed once (and presumably cached in a register) instead of generating
* extra load instructions for each MMIO access.
*
* Given that these macros are only intended for non-GSI interrupt registers
* (and the goal is to avoid extra instructions generated by the compiler),
* these macros do not account for uncore->gsi_offset. Any caller that needs
* to use these macros on a GSI register is responsible for adding the
* appropriate GSI offset to the 'base' parameter.
*/
#define raw_reg_read(base, reg) \
readl(base + i915_mmio_reg_offset(reg))
#define raw_reg_write(base, reg, value) \
writel(value, base + i915_mmio_reg_offset(reg))
#define intel_uncore_forcewake_get(x, y) do { } while (0)
#define intel_uncore_forcewake_put(x, y) do { } while (0)
#define intel_uncore_arm_unclaimed_mmio_detection(x) do { } while (0)
#endif /* __INTEL_UNCORE_H__ */