// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
* Copyright (C) 2022 Ventana Micro Systems Inc.
*/
#define pr_fmt(fmt) "riscv-imsic: " fmt
#include <linux/cpu.h>
#include <linux/bitmap.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <asm/hwcap.h>
#include "irq-riscv-imsic-state.h"
#define IMSIC_DISABLE_EIDELIVERY 0
#define IMSIC_ENABLE_EIDELIVERY 1
#define IMSIC_DISABLE_EITHRESHOLD 1
#define IMSIC_ENABLE_EITHRESHOLD 0
static inline void imsic_csr_write(unsigned long reg, unsigned long val)
{
csr_write(CSR_ISELECT, reg);
csr_write(CSR_IREG, val);
}
static inline unsigned long imsic_csr_read(unsigned long reg)
{
csr_write(CSR_ISELECT, reg);
return csr_read(CSR_IREG);
}
static inline unsigned long imsic_csr_read_clear(unsigned long reg, unsigned long val)
{
csr_write(CSR_ISELECT, reg);
return csr_read_clear(CSR_IREG, val);
}
static inline void imsic_csr_set(unsigned long reg, unsigned long val)
{
csr_write(CSR_ISELECT, reg);
csr_set(CSR_IREG, val);
}
static inline void imsic_csr_clear(unsigned long reg, unsigned long val)
{
csr_write(CSR_ISELECT, reg);
csr_clear(CSR_IREG, val);
}
struct imsic_priv *imsic;
const struct imsic_global_config *imsic_get_global_config(void)
{
return imsic ? &imsic->global : NULL;
}
EXPORT_SYMBOL_GPL(imsic_get_global_config);
static bool __imsic_eix_read_clear(unsigned long id, bool pend)
{
unsigned long isel, imask;
isel = id / BITS_PER_LONG;
isel *= BITS_PER_LONG / IMSIC_EIPx_BITS;
isel += pend ? IMSIC_EIP0 : IMSIC_EIE0;
imask = BIT(id & (__riscv_xlen - 1));
return !!(imsic_csr_read_clear(isel, imask) & imask);
}
static inline bool __imsic_id_read_clear_enabled(unsigned long id)
{
return __imsic_eix_read_clear(id, false);
}
static inline bool __imsic_id_read_clear_pending(unsigned long id)
{
return __imsic_eix_read_clear(id, true);
}
void __imsic_eix_update(unsigned long base_id, unsigned long num_id, bool pend, bool val)
{
unsigned long id = base_id, last_id = base_id + num_id;
unsigned long i, isel, ireg;
while (id < last_id) {
isel = id / BITS_PER_LONG;
isel *= BITS_PER_LONG / IMSIC_EIPx_BITS;
isel += pend ? IMSIC_EIP0 : IMSIC_EIE0;
/*
* Prepare the ID mask to be programmed in the
* IMSIC EIEx and EIPx registers. These registers
* are XLEN-wide and we must not touch IDs which
* are < base_id and >= (base_id + num_id).
*/
ireg = 0;
for (i = id & (__riscv_xlen - 1); id < last_id && i < __riscv_xlen; i++) {
ireg |= BIT(i);
id++;
}
/*
* The IMSIC EIEx and EIPx registers are indirectly
* accessed via using ISELECT and IREG CSRs so we
* need to access these CSRs without getting preempted.
*
* All existing users of this function call this
* function with local IRQs disabled so we don't
* need to do anything special here.
*/
if (val)
imsic_csr_set(isel, ireg);
else
imsic_csr_clear(isel, ireg);
}
}
static void __imsic_local_sync(struct imsic_local_priv *lpriv)
{
struct imsic_local_config *mlocal;
struct imsic_vector *vec, *mvec;
int i;
lockdep_assert_held(&lpriv->lock);
for_each_set_bit(i, lpriv->dirty_bitmap, imsic->global.nr_ids + 1) {
if (!i || i == IMSIC_IPI_ID)
goto skip;
vec = &lpriv->vectors[i];
if (READ_ONCE(vec->enable))
__imsic_id_set_enable(i);
else
__imsic_id_clear_enable(i);
/*
* If the ID was being moved to a new ID on some other CPU
* then we can get a MSI during the movement so check the
* ID pending bit and re-trigger the new ID on other CPU
* using MMIO write.
*/
mvec = READ_ONCE(vec->move);
WRITE_ONCE(vec->move, NULL);
if (mvec && mvec != vec) {
if (__imsic_id_read_clear_pending(i)) {
mlocal = per_cpu_ptr(imsic->global.local, mvec->cpu);
writel_relaxed(mvec->local_id, mlocal->msi_va);
}
imsic_vector_free(&lpriv->vectors[i]);
}
skip:
bitmap_clear(lpriv->dirty_bitmap, i, 1);
}
}
void imsic_local_sync_all(void)
{
struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv);
unsigned long flags;
raw_spin_lock_irqsave(&lpriv->lock, flags);
bitmap_fill(lpriv->dirty_bitmap, imsic->global.nr_ids + 1);
__imsic_local_sync(lpriv);
raw_spin_unlock_irqrestore(&lpriv->lock, flags);
}
void imsic_local_delivery(bool enable)
{
if (enable) {
imsic_csr_write(IMSIC_EITHRESHOLD, IMSIC_ENABLE_EITHRESHOLD);
imsic_csr_write(IMSIC_EIDELIVERY, IMSIC_ENABLE_EIDELIVERY);
return;
}
imsic_csr_write(IMSIC_EIDELIVERY, IMSIC_DISABLE_EIDELIVERY);
imsic_csr_write(IMSIC_EITHRESHOLD, IMSIC_DISABLE_EITHRESHOLD);
}
#ifdef CONFIG_SMP
static void imsic_local_timer_callback(struct timer_list *timer)
{
struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv);
unsigned long flags;
raw_spin_lock_irqsave(&lpriv->lock, flags);
__imsic_local_sync(lpriv);
raw_spin_unlock_irqrestore(&lpriv->lock, flags);
}
static void __imsic_remote_sync(struct imsic_local_priv *lpriv, unsigned int cpu)
{
lockdep_assert_held(&lpriv->lock);
/*
* The spinlock acquire/release semantics ensure that changes
* to vector enable, vector move and dirty bitmap are visible
* to the target CPU.
*/
/*
* We schedule a timer on the target CPU if the target CPU is not
* same as the current CPU. An offline CPU will unconditionally
* synchronize IDs through imsic_starting_cpu() when the
* CPU is brought up.
*/
if (cpu_online(cpu)) {
if (cpu == smp_processor_id()) {
__imsic_local_sync(lpriv);
return;
}
if (!timer_pending(&lpriv->timer)) {
lpriv->timer.expires = jiffies + 1;
add_timer_on(&lpriv->timer, cpu);
}
}
}
#else
static void __imsic_remote_sync(struct imsic_local_priv *lpriv, unsigned int cpu)
{
lockdep_assert_held(&lpriv->lock);
__imsic_local_sync(lpriv);
}
#endif
void imsic_vector_mask(struct imsic_vector *vec)
{
struct imsic_local_priv *lpriv;
lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu);
if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec))
return;
/*
* This function is called through Linux irq subsystem with
* irqs disabled so no need to save/restore irq flags.
*/
raw_spin_lock(&lpriv->lock);
WRITE_ONCE(vec->enable, false);
bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1);
__imsic_remote_sync(lpriv, vec->cpu);
raw_spin_unlock(&lpriv->lock);
}
void imsic_vector_unmask(struct imsic_vector *vec)
{
struct imsic_local_priv *lpriv;
lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu);
if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec))
return;
/*
* This function is called through Linux irq subsystem with
* irqs disabled so no need to save/restore irq flags.
*/
raw_spin_lock(&lpriv->lock);
WRITE_ONCE(vec->enable, true);
bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1);
__imsic_remote_sync(lpriv, vec->cpu);
raw_spin_unlock(&lpriv->lock);
}
static bool imsic_vector_move_update(struct imsic_local_priv *lpriv, struct imsic_vector *vec,
bool new_enable, struct imsic_vector *new_move)
{
unsigned long flags;
bool enabled;
raw_spin_lock_irqsave(&lpriv->lock, flags);
/* Update enable and move details */
enabled = READ_ONCE(vec->enable);
WRITE_ONCE(vec->enable, new_enable);
WRITE_ONCE(vec->move, new_move);
/* Mark the vector as dirty and synchronize */
bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1);
__imsic_remote_sync(lpriv, vec->cpu);
raw_spin_unlock_irqrestore(&lpriv->lock, flags);
return enabled;
}
void imsic_vector_move(struct imsic_vector *old_vec, struct imsic_vector *new_vec)
{
struct imsic_local_priv *old_lpriv, *new_lpriv;
bool enabled;
if (WARN_ON_ONCE(old_vec->cpu == new_vec->cpu))
return;
old_lpriv = per_cpu_ptr(imsic->lpriv, old_vec->cpu);
if (WARN_ON_ONCE(&old_lpriv->vectors[old_vec->local_id] != old_vec))
return;
new_lpriv = per_cpu_ptr(imsic->lpriv, new_vec->cpu);
if (WARN_ON_ONCE(&new_lpriv->vectors[new_vec->local_id] != new_vec))
return;
/*
* Move and re-trigger the new vector based on the pending
* state of the old vector because we might get a device
* interrupt on the old vector while device was being moved
* to the new vector.
*/
enabled = imsic_vector_move_update(old_lpriv, old_vec, false, new_vec);
imsic_vector_move_update(new_lpriv, new_vec, enabled, new_vec);
}
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
void imsic_vector_debug_show(struct seq_file *m, struct imsic_vector *vec, int ind)
{
struct imsic_local_priv *lpriv;
struct imsic_vector *mvec;
bool is_enabled;
lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu);
if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec))
return;
is_enabled = imsic_vector_isenabled(vec);
mvec = imsic_vector_get_move(vec);
seq_printf(m, "%*starget_cpu : %5u\n", ind, "", vec->cpu);
seq_printf(m, "%*starget_local_id : %5u\n", ind, "", vec->local_id);
seq_printf(m, "%*sis_reserved : %5u\n", ind, "",
(vec->local_id <= IMSIC_IPI_ID) ? 1 : 0);
seq_printf(m, "%*sis_enabled : %5u\n", ind, "", is_enabled ? 1 : 0);
seq_printf(m, "%*sis_move_pending : %5u\n", ind, "", mvec ? 1 : 0);
if (mvec) {
seq_printf(m, "%*smove_cpu : %5u\n", ind, "", mvec->cpu);
seq_printf(m, "%*smove_local_id : %5u\n", ind, "", mvec->local_id);
}
}
void imsic_vector_debug_show_summary(struct seq_file *m, int ind)
{
irq_matrix_debug_show(m, imsic->matrix, ind);
}
#endif
struct imsic_vector *imsic_vector_from_local_id(unsigned int cpu, unsigned int local_id)
{
struct imsic_local_priv *lpriv = per_cpu_ptr(imsic->lpriv, cpu);
if (!lpriv || imsic->global.nr_ids < local_id)
return NULL;
return &lpriv->vectors[local_id];
}
struct imsic_vector *imsic_vector_alloc(unsigned int hwirq, const struct cpumask *mask)
{
struct imsic_vector *vec = NULL;
struct imsic_local_priv *lpriv;
unsigned long flags;
unsigned int cpu;
int local_id;
raw_spin_lock_irqsave(&imsic->matrix_lock, flags);
local_id = irq_matrix_alloc(imsic->matrix, mask, false, &cpu);
raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags);
if (local_id < 0)
return NULL;
lpriv = per_cpu_ptr(imsic->lpriv, cpu);
vec = &lpriv->vectors[local_id];
vec->hwirq = hwirq;
vec->enable = false;
vec->move = NULL;
return vec;
}
void imsic_vector_free(struct imsic_vector *vec)
{
unsigned long flags;
raw_spin_lock_irqsave(&imsic->matrix_lock, flags);
vec->hwirq = UINT_MAX;
irq_matrix_free(imsic->matrix, vec->cpu, vec->local_id, false);
raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags);
}
static void __init imsic_local_cleanup(void)
{
struct imsic_local_priv *lpriv;
int cpu;
for_each_possible_cpu(cpu) {
lpriv = per_cpu_ptr(imsic->lpriv, cpu);
bitmap_free(lpriv->dirty_bitmap);
kfree(lpriv->vectors);
}
free_percpu(imsic->lpriv);
}
static int __init imsic_local_init(void)
{
struct imsic_global_config *global = &imsic->global;
struct imsic_local_priv *lpriv;
struct imsic_vector *vec;
int cpu, i;
/* Allocate per-CPU private state */
imsic->lpriv = alloc_percpu(typeof(*imsic->lpriv));
if (!imsic->lpriv)
return -ENOMEM;
/* Setup per-CPU private state */
for_each_possible_cpu(cpu) {
lpriv = per_cpu_ptr(imsic->lpriv, cpu);
raw_spin_lock_init(&lpriv->lock);
/* Allocate dirty bitmap */
lpriv->dirty_bitmap = bitmap_zalloc(global->nr_ids + 1, GFP_KERNEL);
if (!lpriv->dirty_bitmap)
goto fail_local_cleanup;
#ifdef CONFIG_SMP
/* Setup lazy timer for synchronization */
timer_setup(&lpriv->timer, imsic_local_timer_callback, TIMER_PINNED);
#endif
/* Allocate vector array */
lpriv->vectors = kcalloc(global->nr_ids + 1, sizeof(*lpriv->vectors),
GFP_KERNEL);
if (!lpriv->vectors)
goto fail_local_cleanup;
/* Setup vector array */
for (i = 0; i <= global->nr_ids; i++) {
vec = &lpriv->vectors[i];
vec->cpu = cpu;
vec->local_id = i;
vec->hwirq = UINT_MAX;
}
}
return 0;
fail_local_cleanup:
imsic_local_cleanup();
return -ENOMEM;
}
void imsic_state_online(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&imsic->matrix_lock, flags);
irq_matrix_online(imsic->matrix);
raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags);
}
void imsic_state_offline(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&imsic->matrix_lock, flags);
irq_matrix_offline(imsic->matrix);
raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags);
#ifdef CONFIG_SMP
struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv);
raw_spin_lock_irqsave(&lpriv->lock, flags);
WARN_ON_ONCE(try_to_del_timer_sync(&lpriv->timer) < 0);
raw_spin_unlock_irqrestore(&lpriv->lock, flags);
#endif
}
static int __init imsic_matrix_init(void)
{
struct imsic_global_config *global = &imsic->global;
raw_spin_lock_init(&imsic->matrix_lock);
imsic->matrix = irq_alloc_matrix(global->nr_ids + 1,
0, global->nr_ids + 1);
if (!imsic->matrix)
return -ENOMEM;
/* Reserve ID#0 because it is special and never implemented */
irq_matrix_assign_system(imsic->matrix, 0, false);
/* Reserve IPI ID because it is special and used internally */
irq_matrix_assign_system(imsic->matrix, IMSIC_IPI_ID, false);
return 0;
}
static int __init imsic_get_parent_hartid(struct fwnode_handle *fwnode,
u32 index, unsigned long *hartid)
{
struct of_phandle_args parent;
int rc;
/*
* Currently, only OF fwnode is supported so extend this
* function for ACPI support.
*/
if (!is_of_node(fwnode))
return -EINVAL;
rc = of_irq_parse_one(to_of_node(fwnode), index, &parent);
if (rc)
return rc;
/*
* Skip interrupts other than external interrupts for
* current privilege level.
*/
if (parent.args[0] != RV_IRQ_EXT)
return -EINVAL;
return riscv_of_parent_hartid(parent.np, hartid);
}
static int __init imsic_get_mmio_resource(struct fwnode_handle *fwnode,
u32 index, struct resource *res)
{
/*
* Currently, only OF fwnode is supported so extend this
* function for ACPI support.
*/
if (!is_of_node(fwnode))
return -EINVAL;
return of_address_to_resource(to_of_node(fwnode), index, res);
}
static int __init imsic_parse_fwnode(struct fwnode_handle *fwnode,
struct imsic_global_config *global,
u32 *nr_parent_irqs,
u32 *nr_mmios)
{
unsigned long hartid;
struct resource res;
int rc;
u32 i;
/*
* Currently, only OF fwnode is supported so extend this
* function for ACPI support.
*/
if (!is_of_node(fwnode))
return -EINVAL;
*nr_parent_irqs = 0;
*nr_mmios = 0;
/* Find number of parent interrupts */
while (!imsic_get_parent_hartid(fwnode, *nr_parent_irqs, &hartid))
(*nr_parent_irqs)++;
if (!*nr_parent_irqs) {
pr_err("%pfwP: no parent irqs available\n", fwnode);
return -EINVAL;
}
/* Find number of guest index bits in MSI address */
rc = of_property_read_u32(to_of_node(fwnode), "riscv,guest-index-bits",
&global->guest_index_bits);
if (rc)
global->guest_index_bits = 0;
/* Find number of HART index bits */
rc = of_property_read_u32(to_of_node(fwnode), "riscv,hart-index-bits",
&global->hart_index_bits);
if (rc) {
/* Assume default value */
global->hart_index_bits = __fls(*nr_parent_irqs);
if (BIT(global->hart_index_bits) < *nr_parent_irqs)
global->hart_index_bits++;
}
/* Find number of group index bits */
rc = of_property_read_u32(to_of_node(fwnode), "riscv,group-index-bits",
&global->group_index_bits);
if (rc)
global->group_index_bits = 0;
/*
* Find first bit position of group index.
* If not specified assumed the default APLIC-IMSIC configuration.
*/
rc = of_property_read_u32(to_of_node(fwnode), "riscv,group-index-shift",
&global->group_index_shift);
if (rc)
global->group_index_shift = IMSIC_MMIO_PAGE_SHIFT * 2;
/* Find number of interrupt identities */
rc = of_property_read_u32(to_of_node(fwnode), "riscv,num-ids",
&global->nr_ids);
if (rc) {
pr_err("%pfwP: number of interrupt identities not found\n", fwnode);
return rc;
}
/* Find number of guest interrupt identities */
rc = of_property_read_u32(to_of_node(fwnode), "riscv,num-guest-ids",
&global->nr_guest_ids);
if (rc)
global->nr_guest_ids = global->nr_ids;
/* Sanity check guest index bits */
i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT;
if (i < global->guest_index_bits) {
pr_err("%pfwP: guest index bits too big\n", fwnode);
return -EINVAL;
}
/* Sanity check HART index bits */
i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT - global->guest_index_bits;
if (i < global->hart_index_bits) {
pr_err("%pfwP: HART index bits too big\n", fwnode);
return -EINVAL;
}
/* Sanity check group index bits */
i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT -
global->guest_index_bits - global->hart_index_bits;
if (i < global->group_index_bits) {
pr_err("%pfwP: group index bits too big\n", fwnode);
return -EINVAL;
}
/* Sanity check group index shift */
i = global->group_index_bits + global->group_index_shift - 1;
if (i >= BITS_PER_LONG) {
pr_err("%pfwP: group index shift too big\n", fwnode);
return -EINVAL;
}
/* Sanity check number of interrupt identities */
if (global->nr_ids < IMSIC_MIN_ID ||
global->nr_ids >= IMSIC_MAX_ID ||
(global->nr_ids & IMSIC_MIN_ID) != IMSIC_MIN_ID) {
pr_err("%pfwP: invalid number of interrupt identities\n", fwnode);
return -EINVAL;
}
/* Sanity check number of guest interrupt identities */
if (global->nr_guest_ids < IMSIC_MIN_ID ||
global->nr_guest_ids >= IMSIC_MAX_ID ||
(global->nr_guest_ids & IMSIC_MIN_ID) != IMSIC_MIN_ID) {
pr_err("%pfwP: invalid number of guest interrupt identities\n", fwnode);
return -EINVAL;
}
/* Compute base address */
rc = imsic_get_mmio_resource(fwnode, 0, &res);
if (rc) {
pr_err("%pfwP: first MMIO resource not found\n", fwnode);
return -EINVAL;
}
global->base_addr = res.start;
global->base_addr &= ~(BIT(global->guest_index_bits +
global->hart_index_bits +
IMSIC_MMIO_PAGE_SHIFT) - 1);
global->base_addr &= ~((BIT(global->group_index_bits) - 1) <<
global->group_index_shift);
/* Find number of MMIO register sets */
while (!imsic_get_mmio_resource(fwnode, *nr_mmios, &res))
(*nr_mmios)++;
return 0;
}
int __init imsic_setup_state(struct fwnode_handle *fwnode)
{
u32 i, j, index, nr_parent_irqs, nr_mmios, nr_handlers = 0;
struct imsic_global_config *global;
struct imsic_local_config *local;
void __iomem **mmios_va = NULL;
struct resource *mmios = NULL;
unsigned long reloff, hartid;
phys_addr_t base_addr;
int rc, cpu;
/*
* Only one IMSIC instance allowed in a platform for clean
* implementation of SMP IRQ affinity and per-CPU IPIs.
*
* This means on a multi-socket (or multi-die) platform we
* will have multiple MMIO regions for one IMSIC instance.
*/
if (imsic) {
pr_err("%pfwP: already initialized hence ignoring\n", fwnode);
return -EALREADY;
}
if (!riscv_isa_extension_available(NULL, SxAIA)) {
pr_err("%pfwP: AIA support not available\n", fwnode);
return -ENODEV;
}
imsic = kzalloc(sizeof(*imsic), GFP_KERNEL);
if (!imsic)
return -ENOMEM;
imsic->fwnode = fwnode;
global = &imsic->global;
global->local = alloc_percpu(typeof(*global->local));
if (!global->local) {
rc = -ENOMEM;
goto out_free_priv;
}
/* Parse IMSIC fwnode */
rc = imsic_parse_fwnode(fwnode, global, &nr_parent_irqs, &nr_mmios);
if (rc)
goto out_free_local;
/* Allocate MMIO resource array */
mmios = kcalloc(nr_mmios, sizeof(*mmios), GFP_KERNEL);
if (!mmios) {
rc = -ENOMEM;
goto out_free_local;
}
/* Allocate MMIO virtual address array */
mmios_va = kcalloc(nr_mmios, sizeof(*mmios_va), GFP_KERNEL);
if (!mmios_va) {
rc = -ENOMEM;
goto out_iounmap;
}
/* Parse and map MMIO register sets */
for (i = 0; i < nr_mmios; i++) {
rc = imsic_get_mmio_resource(fwnode, i, &mmios[i]);
if (rc) {
pr_err("%pfwP: unable to parse MMIO regset %d\n", fwnode, i);
goto out_iounmap;
}
base_addr = mmios[i].start;
base_addr &= ~(BIT(global->guest_index_bits +
global->hart_index_bits +
IMSIC_MMIO_PAGE_SHIFT) - 1);
base_addr &= ~((BIT(global->group_index_bits) - 1) <<
global->group_index_shift);
if (base_addr != global->base_addr) {
rc = -EINVAL;
pr_err("%pfwP: address mismatch for regset %d\n", fwnode, i);
goto out_iounmap;
}
mmios_va[i] = ioremap(mmios[i].start, resource_size(&mmios[i]));
if (!mmios_va[i]) {
rc = -EIO;
pr_err("%pfwP: unable to map MMIO regset %d\n", fwnode, i);
goto out_iounmap;
}
}
/* Initialize local (or per-CPU )state */
rc = imsic_local_init();
if (rc) {
pr_err("%pfwP: failed to initialize local state\n",
fwnode);
goto out_iounmap;
}
/* Configure handlers for target CPUs */
for (i = 0; i < nr_parent_irqs; i++) {
rc = imsic_get_parent_hartid(fwnode, i, &hartid);
if (rc) {
pr_warn("%pfwP: hart ID for parent irq%d not found\n", fwnode, i);
continue;
}
cpu = riscv_hartid_to_cpuid(hartid);
if (cpu < 0) {
pr_warn("%pfwP: invalid cpuid for parent irq%d\n", fwnode, i);
continue;
}
/* Find MMIO location of MSI page */
index = nr_mmios;
reloff = i * BIT(global->guest_index_bits) *
IMSIC_MMIO_PAGE_SZ;
for (j = 0; nr_mmios; j++) {
if (reloff < resource_size(&mmios[j])) {
index = j;
break;
}
/*
* MMIO region size may not be aligned to
* BIT(global->guest_index_bits) * IMSIC_MMIO_PAGE_SZ
* if holes are present.
*/
reloff -= ALIGN(resource_size(&mmios[j]),
BIT(global->guest_index_bits) * IMSIC_MMIO_PAGE_SZ);
}
if (index >= nr_mmios) {
pr_warn("%pfwP: MMIO not found for parent irq%d\n", fwnode, i);
continue;
}
local = per_cpu_ptr(global->local, cpu);
local->msi_pa = mmios[index].start + reloff;
local->msi_va = mmios_va[index] + reloff;
nr_handlers++;
}
/* If no CPU handlers found then can't take interrupts */
if (!nr_handlers) {
pr_err("%pfwP: No CPU handlers found\n", fwnode);
rc = -ENODEV;
goto out_local_cleanup;
}
/* Initialize matrix allocator */
rc = imsic_matrix_init();
if (rc) {
pr_err("%pfwP: failed to create matrix allocator\n", fwnode);
goto out_local_cleanup;
}
/* We don't need MMIO arrays anymore so let's free-up */
kfree(mmios_va);
kfree(mmios);
return 0;
out_local_cleanup:
imsic_local_cleanup();
out_iounmap:
for (i = 0; i < nr_mmios; i++) {
if (mmios_va[i])
iounmap(mmios_va[i]);
}
kfree(mmios_va);
kfree(mmios);
out_free_local:
free_percpu(imsic->global.local);
out_free_priv:
kfree(imsic);
imsic = NULL;
return rc;
}