// SPDX-License-Identifier: GPL-2.0-only
/*
* Crypto acceleration support for Rockchip RK3288
*
* Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
*
* Author: Zain Wang <[email protected]>
*
* Some ideas are from marvell/cesa.c and s5p-sss.c driver.
*/
#include <asm/unaligned.h>
#include <crypto/internal/hash.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include "rk3288_crypto.h"
/*
* IC can not process zero message hash,
* so we put the fixed hash out when met zero message.
*/
static bool rk_ahash_need_fallback(struct ahash_request *req)
{
struct scatterlist *sg;
sg = req->src;
while (sg) {
if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
return true;
}
if (sg->length % 4) {
return true;
}
sg = sg_next(sg);
}
return false;
}
static int rk_ahash_digest_fb(struct ahash_request *areq)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct rk_ahash_ctx *tfmctx = crypto_ahash_ctx(tfm);
struct ahash_alg *alg = crypto_ahash_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
algt->stat_fb++;
ahash_request_set_tfm(&rctx->fallback_req, tfmctx->fallback_tfm);
rctx->fallback_req.base.flags = areq->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = areq->nbytes;
rctx->fallback_req.src = areq->src;
rctx->fallback_req.result = areq->result;
return crypto_ahash_digest(&rctx->fallback_req);
}
static int zero_message_process(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
int rk_digest_size = crypto_ahash_digestsize(tfm);
switch (rk_digest_size) {
case SHA1_DIGEST_SIZE:
memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
break;
case SHA256_DIGEST_SIZE:
memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
break;
case MD5_DIGEST_SIZE:
memcpy(req->result, md5_zero_message_hash, rk_digest_size);
break;
default:
return -EINVAL;
}
return 0;
}
static void rk_ahash_reg_init(struct ahash_request *req,
struct rk_crypto_info *dev)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
int reg_status;
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
reg_status &= (~RK_CRYPTO_HASH_FLUSH);
reg_status |= _SBF(0xffff, 16);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
RK_CRYPTO_HRDMA_DONE_ENA);
CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
RK_CRYPTO_HRDMA_DONE_INT);
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, rctx->mode |
RK_CRYPTO_HASH_SWAP_DO);
CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
RK_CRYPTO_BYTESWAP_BRFIFO |
RK_CRYPTO_BYTESWAP_BTFIFO);
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, req->nbytes);
}
static int rk_ahash_init(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int rk_ahash_update(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int rk_ahash_final(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int rk_ahash_finup(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int rk_ahash_import(struct ahash_request *req, const void *in)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_import(&rctx->fallback_req, in);
}
static int rk_ahash_export(struct ahash_request *req, void *out)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_export(&rctx->fallback_req, out);
}
static int rk_ahash_digest(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct rk_crypto_info *dev;
struct crypto_engine *engine;
if (rk_ahash_need_fallback(req))
return rk_ahash_digest_fb(req);
if (!req->nbytes)
return zero_message_process(req);
dev = get_rk_crypto();
rctx->dev = dev;
engine = dev->engine;
return crypto_transfer_hash_request_to_engine(engine, req);
}
static void crypto_ahash_dma_start(struct rk_crypto_info *dev, struct scatterlist *sg)
{
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, sg_dma_address(sg));
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, sg_dma_len(sg) / 4);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
(RK_CRYPTO_HASH_START << 16));
}
static int rk_hash_prepare(struct crypto_engine *engine, void *breq)
{
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
struct rk_crypto_info *rkc = rctx->dev;
int ret;
ret = dma_map_sg(rkc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE);
if (ret <= 0)
return -EINVAL;
rctx->nrsg = ret;
return 0;
}
static void rk_hash_unprepare(struct crypto_engine *engine, void *breq)
{
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
struct rk_crypto_info *rkc = rctx->dev;
dma_unmap_sg(rkc->dev, areq->src, rctx->nrsg, DMA_TO_DEVICE);
}
static int rk_hash_run(struct crypto_engine *engine, void *breq)
{
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
struct ahash_alg *alg = crypto_ahash_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
struct scatterlist *sg = areq->src;
struct rk_crypto_info *rkc = rctx->dev;
int err;
int i;
u32 v;
err = pm_runtime_resume_and_get(rkc->dev);
if (err)
return err;
err = rk_hash_prepare(engine, breq);
if (err)
goto theend;
rctx->mode = 0;
algt->stat_req++;
rkc->nreq++;
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
rctx->mode = RK_CRYPTO_HASH_SHA1;
break;
case SHA256_DIGEST_SIZE:
rctx->mode = RK_CRYPTO_HASH_SHA256;
break;
case MD5_DIGEST_SIZE:
rctx->mode = RK_CRYPTO_HASH_MD5;
break;
default:
err = -EINVAL;
goto theend;
}
rk_ahash_reg_init(areq, rkc);
while (sg) {
reinit_completion(&rkc->complete);
rkc->status = 0;
crypto_ahash_dma_start(rkc, sg);
wait_for_completion_interruptible_timeout(&rkc->complete,
msecs_to_jiffies(2000));
if (!rkc->status) {
dev_err(rkc->dev, "DMA timeout\n");
err = -EFAULT;
goto theend;
}
sg = sg_next(sg);
}
/*
* it will take some time to process date after last dma
* transmission.
*
* waiting time is relative with the last date len,
* so cannot set a fixed time here.
* 10us makes system not call here frequently wasting
* efficiency, and make it response quickly when dma
* complete.
*/
readl_poll_timeout(rkc->reg + RK_CRYPTO_HASH_STS, v, v == 0, 10, 1000);
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) {
v = readl(rkc->reg + RK_CRYPTO_HASH_DOUT_0 + i * 4);
put_unaligned_le32(v, areq->result + i * 4);
}
theend:
pm_runtime_put_autosuspend(rkc->dev);
rk_hash_unprepare(engine, breq);
local_bh_disable();
crypto_finalize_hash_request(engine, breq, err);
local_bh_enable();
return 0;
}
static int rk_hash_init_tfm(struct crypto_ahash *tfm)
{
struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
const char *alg_name = crypto_ahash_alg_name(tfm);
struct ahash_alg *alg = crypto_ahash_alg(tfm);
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
/* for fallback */
tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback_tfm)) {
dev_err(algt->dev->dev, "Could not load fallback driver.\n");
return PTR_ERR(tctx->fallback_tfm);
}
crypto_ahash_set_reqsize(tfm,
sizeof(struct rk_ahash_rctx) +
crypto_ahash_reqsize(tctx->fallback_tfm));
return 0;
}
static void rk_hash_exit_tfm(struct crypto_ahash *tfm)
{
struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
crypto_free_ahash(tctx->fallback_tfm);
}
struct rk_crypto_tmp rk_ahash_sha1 = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash.base = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.init_tfm = rk_hash_init_tfm,
.exit_tfm = rk_hash_exit_tfm,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "rk-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_module = THIS_MODULE,
}
}
},
.alg.hash.op = {
.do_one_request = rk_hash_run,
},
};
struct rk_crypto_tmp rk_ahash_sha256 = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash.base = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.init_tfm = rk_hash_init_tfm,
.exit_tfm = rk_hash_exit_tfm,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "rk-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_module = THIS_MODULE,
}
}
},
.alg.hash.op = {
.do_one_request = rk_hash_run,
},
};
struct rk_crypto_tmp rk_ahash_md5 = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash.base = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.init_tfm = rk_hash_init_tfm,
.exit_tfm = rk_hash_exit_tfm,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "rk-md5",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_module = THIS_MODULE,
}
}
},
.alg.hash.op = {
.do_one_request = rk_hash_run,
},
};