// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Linaro Ltd
*/
#include <linux/device.h>
#include <linux/interconnect-provider.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "icc-common.h"
#include "icc-rpm.h"
/* QNOC QoS */
#define QNOC_QOS_MCTL_LOWn_ADDR(n) (0x8 + (n * 0x1000))
#define QNOC_QOS_MCTL_DFLT_PRIO_MASK 0x70
#define QNOC_QOS_MCTL_DFLT_PRIO_SHIFT 4
#define QNOC_QOS_MCTL_URGFWD_EN_MASK 0x8
#define QNOC_QOS_MCTL_URGFWD_EN_SHIFT 3
/* BIMC QoS */
#define M_BKE_REG_BASE(n) (0x300 + (0x4000 * n))
#define M_BKE_EN_ADDR(n) (M_BKE_REG_BASE(n))
#define M_BKE_HEALTH_CFG_ADDR(i, n) (M_BKE_REG_BASE(n) + 0x40 + (0x4 * i))
#define M_BKE_HEALTH_CFG_LIMITCMDS_MASK 0x80000000
#define M_BKE_HEALTH_CFG_AREQPRIO_MASK 0x300
#define M_BKE_HEALTH_CFG_PRIOLVL_MASK 0x3
#define M_BKE_HEALTH_CFG_AREQPRIO_SHIFT 0x8
#define M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT 0x1f
#define M_BKE_EN_EN_BMASK 0x1
/* NoC QoS */
#define NOC_QOS_PRIORITYn_ADDR(n) (0x8 + (n * 0x1000))
#define NOC_QOS_PRIORITY_P1_MASK 0xc
#define NOC_QOS_PRIORITY_P0_MASK 0x3
#define NOC_QOS_PRIORITY_P1_SHIFT 0x2
#define NOC_QOS_MODEn_ADDR(n) (0xc + (n * 0x1000))
#define NOC_QOS_MODEn_MASK 0x3
#define NOC_QOS_MODE_FIXED_VAL 0x0
#define NOC_QOS_MODE_BYPASS_VAL 0x2
#define ICC_BUS_CLK_MIN_RATE 19200ULL /* kHz */
static int qcom_icc_set_qnoc_qos(struct icc_node *src)
{
struct icc_provider *provider = src->provider;
struct qcom_icc_provider *qp = to_qcom_provider(provider);
struct qcom_icc_node *qn = src->data;
struct qcom_icc_qos *qos = &qn->qos;
int rc;
rc = regmap_update_bits(qp->regmap,
qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port),
QNOC_QOS_MCTL_DFLT_PRIO_MASK,
qos->areq_prio << QNOC_QOS_MCTL_DFLT_PRIO_SHIFT);
if (rc)
return rc;
return regmap_update_bits(qp->regmap,
qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port),
QNOC_QOS_MCTL_URGFWD_EN_MASK,
!!qos->urg_fwd_en << QNOC_QOS_MCTL_URGFWD_EN_SHIFT);
}
static int qcom_icc_bimc_set_qos_health(struct qcom_icc_provider *qp,
struct qcom_icc_qos *qos,
int regnum)
{
u32 val;
u32 mask;
val = qos->prio_level;
mask = M_BKE_HEALTH_CFG_PRIOLVL_MASK;
val |= qos->areq_prio << M_BKE_HEALTH_CFG_AREQPRIO_SHIFT;
mask |= M_BKE_HEALTH_CFG_AREQPRIO_MASK;
/* LIMITCMDS is not present on M_BKE_HEALTH_3 */
if (regnum != 3) {
val |= qos->limit_commands << M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT;
mask |= M_BKE_HEALTH_CFG_LIMITCMDS_MASK;
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + M_BKE_HEALTH_CFG_ADDR(regnum, qos->qos_port),
mask, val);
}
static int qcom_icc_set_bimc_qos(struct icc_node *src)
{
struct qcom_icc_provider *qp;
struct qcom_icc_node *qn;
struct icc_provider *provider;
u32 mode = NOC_QOS_MODE_BYPASS;
u32 val = 0;
int i, rc = 0;
qn = src->data;
provider = src->provider;
qp = to_qcom_provider(provider);
if (qn->qos.qos_mode != NOC_QOS_MODE_INVALID)
mode = qn->qos.qos_mode;
/* QoS Priority: The QoS Health parameters are getting considered
* only if we are NOT in Bypass Mode.
*/
if (mode != NOC_QOS_MODE_BYPASS) {
for (i = 3; i >= 0; i--) {
rc = qcom_icc_bimc_set_qos_health(qp,
&qn->qos, i);
if (rc)
return rc;
}
/* Set BKE_EN to 1 when Fixed, Regulator or Limiter Mode */
val = 1;
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + M_BKE_EN_ADDR(qn->qos.qos_port),
M_BKE_EN_EN_BMASK, val);
}
static int qcom_icc_noc_set_qos_priority(struct qcom_icc_provider *qp,
struct qcom_icc_qos *qos)
{
u32 val;
int rc;
/* Must be updated one at a time, P1 first, P0 last */
val = qos->areq_prio << NOC_QOS_PRIORITY_P1_SHIFT;
rc = regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port),
NOC_QOS_PRIORITY_P1_MASK, val);
if (rc)
return rc;
return regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port),
NOC_QOS_PRIORITY_P0_MASK, qos->prio_level);
}
static int qcom_icc_set_noc_qos(struct icc_node *src)
{
struct qcom_icc_provider *qp;
struct qcom_icc_node *qn;
struct icc_provider *provider;
u32 mode = NOC_QOS_MODE_BYPASS_VAL;
int rc = 0;
qn = src->data;
provider = src->provider;
qp = to_qcom_provider(provider);
if (qn->qos.qos_port < 0) {
dev_dbg(src->provider->dev,
"NoC QoS: Skipping %s: vote aggregated on parent.\n",
qn->name);
return 0;
}
if (qn->qos.qos_mode == NOC_QOS_MODE_FIXED) {
dev_dbg(src->provider->dev, "NoC QoS: %s: Set Fixed mode\n", qn->name);
mode = NOC_QOS_MODE_FIXED_VAL;
rc = qcom_icc_noc_set_qos_priority(qp, &qn->qos);
if (rc)
return rc;
} else if (qn->qos.qos_mode == NOC_QOS_MODE_BYPASS) {
dev_dbg(src->provider->dev, "NoC QoS: %s: Set Bypass mode\n", qn->name);
mode = NOC_QOS_MODE_BYPASS_VAL;
} else {
/* How did we get here? */
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_MODEn_ADDR(qn->qos.qos_port),
NOC_QOS_MODEn_MASK, mode);
}
static int qcom_icc_qos_set(struct icc_node *node)
{
struct qcom_icc_provider *qp = to_qcom_provider(node->provider);
struct qcom_icc_node *qn = node->data;
dev_dbg(node->provider->dev, "Setting QoS for %s\n", qn->name);
switch (qp->type) {
case QCOM_ICC_BIMC:
return qcom_icc_set_bimc_qos(node);
case QCOM_ICC_QNOC:
return qcom_icc_set_qnoc_qos(node);
default:
return qcom_icc_set_noc_qos(node);
}
}
static int qcom_icc_rpm_set(struct qcom_icc_node *qn, u64 *bw)
{
int ret, rpm_ctx = 0;
u64 bw_bps;
if (qn->qos.ap_owned)
return 0;
for (rpm_ctx = 0; rpm_ctx < QCOM_SMD_RPM_STATE_NUM; rpm_ctx++) {
bw_bps = icc_units_to_bps(bw[rpm_ctx]);
if (qn->mas_rpm_id != -1) {
ret = qcom_icc_rpm_smd_send(rpm_ctx,
RPM_BUS_MASTER_REQ,
qn->mas_rpm_id,
bw_bps);
if (ret) {
pr_err("qcom_icc_rpm_smd_send mas %d error %d\n",
qn->mas_rpm_id, ret);
return ret;
}
}
if (qn->slv_rpm_id != -1) {
ret = qcom_icc_rpm_smd_send(rpm_ctx,
RPM_BUS_SLAVE_REQ,
qn->slv_rpm_id,
bw_bps);
if (ret) {
pr_err("qcom_icc_rpm_smd_send slv %d error %d\n",
qn->slv_rpm_id, ret);
return ret;
}
}
}
return 0;
}
/**
* qcom_icc_pre_bw_aggregate - cleans up values before re-aggregate requests
* @node: icc node to operate on
*/
static void qcom_icc_pre_bw_aggregate(struct icc_node *node)
{
struct qcom_icc_node *qn;
size_t i;
qn = node->data;
for (i = 0; i < QCOM_SMD_RPM_STATE_NUM; i++) {
qn->sum_avg[i] = 0;
qn->max_peak[i] = 0;
}
}
/**
* qcom_icc_bw_aggregate - aggregate bw for buckets indicated by tag
* @node: node to aggregate
* @tag: tag to indicate which buckets to aggregate
* @avg_bw: new bw to sum aggregate
* @peak_bw: new bw to max aggregate
* @agg_avg: existing aggregate avg bw val
* @agg_peak: existing aggregate peak bw val
*/
static int qcom_icc_bw_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
{
size_t i;
struct qcom_icc_node *qn;
qn = node->data;
if (!tag)
tag = RPM_ALWAYS_TAG;
for (i = 0; i < QCOM_SMD_RPM_STATE_NUM; i++) {
if (tag & BIT(i)) {
qn->sum_avg[i] += avg_bw;
qn->max_peak[i] = max_t(u32, qn->max_peak[i], peak_bw);
}
}
*agg_avg += avg_bw;
*agg_peak = max_t(u32, *agg_peak, peak_bw);
return 0;
}
static u64 qcom_icc_calc_rate(struct qcom_icc_provider *qp, struct qcom_icc_node *qn, int ctx)
{
u64 agg_avg_rate, agg_peak_rate, agg_rate;
if (qn->channels)
agg_avg_rate = div_u64(qn->sum_avg[ctx], qn->channels);
else
agg_avg_rate = qn->sum_avg[ctx];
if (qn->ab_coeff) {
agg_avg_rate = agg_avg_rate * qn->ab_coeff;
agg_avg_rate = div_u64(agg_avg_rate, 100);
}
if (qn->ib_coeff) {
agg_peak_rate = qn->max_peak[ctx] * 100;
agg_peak_rate = div_u64(agg_peak_rate, qn->ib_coeff);
} else {
agg_peak_rate = qn->max_peak[ctx];
}
agg_rate = max_t(u64, agg_avg_rate, agg_peak_rate);
return div_u64(agg_rate, qn->buswidth);
}
/**
* qcom_icc_bus_aggregate - calculate bus clock rates by traversing all nodes
* @provider: generic interconnect provider
* @agg_clk_rate: array containing the aggregated clock rates in kHz
*/
static void qcom_icc_bus_aggregate(struct icc_provider *provider, u64 *agg_clk_rate)
{
struct qcom_icc_provider *qp = to_qcom_provider(provider);
struct qcom_icc_node *qn;
struct icc_node *node;
int ctx;
/*
* Iterate nodes on the provider, aggregate bandwidth requests for
* every bucket and convert them into bus clock rates.
*/
list_for_each_entry(node, &provider->nodes, node_list) {
qn = node->data;
for (ctx = 0; ctx < QCOM_SMD_RPM_STATE_NUM; ctx++) {
agg_clk_rate[ctx] = max_t(u64, agg_clk_rate[ctx],
qcom_icc_calc_rate(qp, qn, ctx));
}
}
}
static int qcom_icc_set(struct icc_node *src, struct icc_node *dst)
{
struct qcom_icc_node *src_qn = NULL, *dst_qn = NULL;
u64 agg_clk_rate[QCOM_SMD_RPM_STATE_NUM] = { 0 };
struct icc_provider *provider;
struct qcom_icc_provider *qp;
u64 active_rate, sleep_rate;
int ret;
src_qn = src->data;
if (dst)
dst_qn = dst->data;
provider = src->provider;
qp = to_qcom_provider(provider);
qcom_icc_bus_aggregate(provider, agg_clk_rate);
active_rate = agg_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE];
sleep_rate = agg_clk_rate[QCOM_SMD_RPM_SLEEP_STATE];
ret = qcom_icc_rpm_set(src_qn, src_qn->sum_avg);
if (ret)
return ret;
if (dst_qn) {
ret = qcom_icc_rpm_set(dst_qn, dst_qn->sum_avg);
if (ret)
return ret;
}
/* Some providers don't have a bus clock to scale */
if (!qp->bus_clk_desc && !qp->bus_clk)
return 0;
/*
* Downstream checks whether the requested rate is zero, but it makes little sense
* to vote for a value that's below the lower threshold, so let's not do so.
*/
if (qp->keep_alive)
active_rate = max(ICC_BUS_CLK_MIN_RATE, active_rate);
/* Some providers have a non-RPM-owned bus clock - convert kHz->Hz for the CCF */
if (qp->bus_clk) {
active_rate = max_t(u64, active_rate, sleep_rate);
/* ARM32 caps clk_set_rate arg to u32.. Nothing we can do about that! */
active_rate = min_t(u64, 1000ULL * active_rate, ULONG_MAX);
return clk_set_rate(qp->bus_clk, active_rate);
}
/* RPM only accepts <=INT_MAX rates */
active_rate = min_t(u64, active_rate, INT_MAX);
sleep_rate = min_t(u64, sleep_rate, INT_MAX);
if (active_rate != qp->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE]) {
ret = qcom_icc_rpm_set_bus_rate(qp->bus_clk_desc, QCOM_SMD_RPM_ACTIVE_STATE,
active_rate);
if (ret)
return ret;
/* Cache the rate after we've successfully commited it to RPM */
qp->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE] = active_rate;
}
if (sleep_rate != qp->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE]) {
ret = qcom_icc_rpm_set_bus_rate(qp->bus_clk_desc, QCOM_SMD_RPM_SLEEP_STATE,
sleep_rate);
if (ret)
return ret;
/* Cache the rate after we've successfully commited it to RPM */
qp->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE] = sleep_rate;
}
/* Handle the node-specific clock */
if (!src_qn->bus_clk_desc)
return 0;
active_rate = qcom_icc_calc_rate(qp, src_qn, QCOM_SMD_RPM_ACTIVE_STATE);
sleep_rate = qcom_icc_calc_rate(qp, src_qn, QCOM_SMD_RPM_SLEEP_STATE);
if (active_rate != src_qn->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE]) {
ret = qcom_icc_rpm_set_bus_rate(src_qn->bus_clk_desc, QCOM_SMD_RPM_ACTIVE_STATE,
active_rate);
if (ret)
return ret;
/* Cache the rate after we've successfully committed it to RPM */
src_qn->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE] = active_rate;
}
if (sleep_rate != src_qn->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE]) {
ret = qcom_icc_rpm_set_bus_rate(src_qn->bus_clk_desc, QCOM_SMD_RPM_SLEEP_STATE,
sleep_rate);
if (ret)
return ret;
/* Cache the rate after we've successfully committed it to RPM */
src_qn->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE] = sleep_rate;
}
return 0;
}
int qnoc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct qcom_icc_desc *desc;
struct icc_onecell_data *data;
struct icc_provider *provider;
struct qcom_icc_node * const *qnodes;
struct qcom_icc_provider *qp;
struct icc_node *node;
size_t num_nodes, i;
const char * const *cds = NULL;
int cd_num;
int ret;
/* wait for the RPM proxy */
if (!qcom_icc_rpm_smd_available())
return -EPROBE_DEFER;
desc = of_device_get_match_data(dev);
if (!desc)
return -EINVAL;
qnodes = desc->nodes;
num_nodes = desc->num_nodes;
if (desc->num_intf_clocks) {
cds = desc->intf_clocks;
cd_num = desc->num_intf_clocks;
} else {
/* 0 intf clocks is perfectly fine */
cd_num = 0;
}
qp = devm_kzalloc(dev, sizeof(*qp), GFP_KERNEL);
if (!qp)
return -ENOMEM;
qp->intf_clks = devm_kcalloc(dev, cd_num, sizeof(*qp->intf_clks), GFP_KERNEL);
if (!qp->intf_clks)
return -ENOMEM;
if (desc->bus_clk_desc) {
qp->bus_clk_desc = devm_kzalloc(dev, sizeof(*qp->bus_clk_desc),
GFP_KERNEL);
if (!qp->bus_clk_desc)
return -ENOMEM;
qp->bus_clk_desc = desc->bus_clk_desc;
} else {
/* Some older SoCs may have a single non-RPM-owned bus clock. */
qp->bus_clk = devm_clk_get_optional(dev, "bus");
if (IS_ERR(qp->bus_clk))
return PTR_ERR(qp->bus_clk);
}
data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes),
GFP_KERNEL);
if (!data)
return -ENOMEM;
qp->num_intf_clks = cd_num;
for (i = 0; i < cd_num; i++)
qp->intf_clks[i].id = cds[i];
qp->keep_alive = desc->keep_alive;
qp->type = desc->type;
qp->qos_offset = desc->qos_offset;
if (desc->regmap_cfg) {
struct resource *res;
void __iomem *mmio;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
/* Try parent's regmap */
qp->regmap = dev_get_regmap(dev->parent, NULL);
if (qp->regmap)
goto regmap_done;
return -ENODEV;
}
mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(mmio))
return PTR_ERR(mmio);
qp->regmap = devm_regmap_init_mmio(dev, mmio, desc->regmap_cfg);
if (IS_ERR(qp->regmap)) {
dev_err(dev, "Cannot regmap interconnect bus resource\n");
return PTR_ERR(qp->regmap);
}
}
regmap_done:
ret = clk_prepare_enable(qp->bus_clk);
if (ret)
return ret;
ret = devm_clk_bulk_get(dev, qp->num_intf_clks, qp->intf_clks);
if (ret)
goto err_disable_unprepare_clk;
provider = &qp->provider;
provider->dev = dev;
provider->set = qcom_icc_set;
provider->pre_aggregate = qcom_icc_pre_bw_aggregate;
provider->aggregate = qcom_icc_bw_aggregate;
provider->xlate_extended = qcom_icc_xlate_extended;
provider->data = data;
icc_provider_init(provider);
/* If this fails, bus accesses will crash the platform! */
ret = clk_bulk_prepare_enable(qp->num_intf_clks, qp->intf_clks);
if (ret)
goto err_disable_unprepare_clk;
for (i = 0; i < num_nodes; i++) {
size_t j;
if (!qnodes[i]->ab_coeff)
qnodes[i]->ab_coeff = qp->ab_coeff;
if (!qnodes[i]->ib_coeff)
qnodes[i]->ib_coeff = qp->ib_coeff;
node = icc_node_create(qnodes[i]->id);
if (IS_ERR(node)) {
clk_bulk_disable_unprepare(qp->num_intf_clks,
qp->intf_clks);
ret = PTR_ERR(node);
goto err_remove_nodes;
}
node->name = qnodes[i]->name;
node->data = qnodes[i];
icc_node_add(node, provider);
for (j = 0; j < qnodes[i]->num_links; j++)
icc_link_create(node, qnodes[i]->links[j]);
/* Set QoS registers (we only need to do it once, generally) */
if (qnodes[i]->qos.ap_owned &&
qnodes[i]->qos.qos_mode != NOC_QOS_MODE_INVALID) {
ret = qcom_icc_qos_set(node);
if (ret) {
clk_bulk_disable_unprepare(qp->num_intf_clks,
qp->intf_clks);
goto err_remove_nodes;
}
}
data->nodes[i] = node;
}
data->num_nodes = num_nodes;
clk_bulk_disable_unprepare(qp->num_intf_clks, qp->intf_clks);
ret = icc_provider_register(provider);
if (ret)
goto err_remove_nodes;
platform_set_drvdata(pdev, qp);
/* Populate child NoC devices if any */
if (of_get_child_count(dev->of_node) > 0) {
ret = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (ret)
goto err_deregister_provider;
}
return 0;
err_deregister_provider:
icc_provider_deregister(provider);
err_remove_nodes:
icc_nodes_remove(provider);
err_disable_unprepare_clk:
clk_disable_unprepare(qp->bus_clk);
return ret;
}
EXPORT_SYMBOL(qnoc_probe);
void qnoc_remove(struct platform_device *pdev)
{
struct qcom_icc_provider *qp = platform_get_drvdata(pdev);
icc_provider_deregister(&qp->provider);
icc_nodes_remove(&qp->provider);
clk_disable_unprepare(qp->bus_clk);
}
EXPORT_SYMBOL(qnoc_remove);