linux/kernel/dma/contiguous.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * Contiguous Memory Allocator for DMA mapping framework
 * Copyright (c) 2010-2011 by Samsung Electronics.
 * Written by:
 *	Marek Szyprowski <[email protected]>
 *	Michal Nazarewicz <[email protected]>
 *
 * Contiguous Memory Allocator
 *
 *   The Contiguous Memory Allocator (CMA) makes it possible to
 *   allocate big contiguous chunks of memory after the system has
 *   booted.
 *
 * Why is it needed?
 *
 *   Various devices on embedded systems have no scatter-getter and/or
 *   IO map support and require contiguous blocks of memory to
 *   operate.  They include devices such as cameras, hardware video
 *   coders, etc.
 *
 *   Such devices often require big memory buffers (a full HD frame
 *   is, for instance, more than 2 mega pixels large, i.e. more than 6
 *   MB of memory), which makes mechanisms such as kmalloc() or
 *   alloc_page() ineffective.
 *
 *   At the same time, a solution where a big memory region is
 *   reserved for a device is suboptimal since often more memory is
 *   reserved then strictly required and, moreover, the memory is
 *   inaccessible to page system even if device drivers don't use it.
 *
 *   CMA tries to solve this issue by operating on memory regions
 *   where only movable pages can be allocated from.  This way, kernel
 *   can use the memory for pagecache and when device driver requests
 *   it, allocated pages can be migrated.
 */

#define pr_fmt(fmt)

#include <asm/page.h>

#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/sizes.h>
#include <linux/dma-map-ops.h>
#include <linux/cma.h>
#include <linux/nospec.h>

#ifdef CONFIG_CMA_SIZE_MBYTES
#define CMA_SIZE_MBYTES
#else
#define CMA_SIZE_MBYTES
#endif

struct cma *dma_contiguous_default_area;

/*
 * Default global CMA area size can be defined in kernel's .config.
 * This is useful mainly for distro maintainers to create a kernel
 * that works correctly for most supported systems.
 * The size can be set in bytes or as a percentage of the total memory
 * in the system.
 *
 * Users, who want to set the size of global CMA area for their system
 * should use cma= kernel parameter.
 */
static const phys_addr_t size_bytes __initconst =;
static phys_addr_t  size_cmdline __initdata =;
static phys_addr_t base_cmdline __initdata;
static phys_addr_t limit_cmdline __initdata;

static int __init early_cma(char *p)
{}
early_param();

#ifdef CONFIG_DMA_NUMA_CMA

static struct cma *dma_contiguous_numa_area[MAX_NUMNODES];
static phys_addr_t numa_cma_size[MAX_NUMNODES] __initdata;
static struct cma *dma_contiguous_pernuma_area[MAX_NUMNODES];
static phys_addr_t pernuma_size_bytes __initdata;

static int __init early_numa_cma(char *p)
{}
early_param();

static int __init early_cma_pernuma(char *p)
{}
early_param();
#endif

#ifdef CONFIG_CMA_SIZE_PERCENTAGE

static phys_addr_t __init __maybe_unused cma_early_percent_memory(void)
{
	unsigned long total_pages = PHYS_PFN(memblock_phys_mem_size());

	return (total_pages * CONFIG_CMA_SIZE_PERCENTAGE / 100) << PAGE_SHIFT;
}

#else

static inline __maybe_unused phys_addr_t cma_early_percent_memory(void)
{}

#endif

#ifdef CONFIG_DMA_NUMA_CMA
static void __init dma_numa_cma_reserve(void)
{}
#else
static inline void __init dma_numa_cma_reserve(void)
{
}
#endif

/**
 * dma_contiguous_reserve() - reserve area(s) for contiguous memory handling
 * @limit: End address of the reserved memory (optional, 0 for any).
 *
 * This function reserves memory from early allocator. It should be
 * called by arch specific code once the early allocator (memblock or bootmem)
 * has been activated and all other subsystems have already allocated/reserved
 * memory.
 */
void __init dma_contiguous_reserve(phys_addr_t limit)
{}

void __weak
dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{}

/**
 * dma_contiguous_reserve_area() - reserve custom contiguous area
 * @size: Size of the reserved area (in bytes),
 * @base: Base address of the reserved area optional, use 0 for any
 * @limit: End address of the reserved memory (optional, 0 for any).
 * @res_cma: Pointer to store the created cma region.
 * @fixed: hint about where to place the reserved area
 *
 * This function reserves memory from early allocator. It should be
 * called by arch specific code once the early allocator (memblock or bootmem)
 * has been activated and all other subsystems have already allocated/reserved
 * memory. This function allows to create custom reserved areas for specific
 * devices.
 *
 * If @fixed is true, reserve contiguous area at exactly @base.  If false,
 * reserve in range from @base to @limit.
 */
int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
				       phys_addr_t limit, struct cma **res_cma,
				       bool fixed)
{}

/**
 * dma_alloc_from_contiguous() - allocate pages from contiguous area
 * @dev:   Pointer to device for which the allocation is performed.
 * @count: Requested number of pages.
 * @align: Requested alignment of pages (in PAGE_SIZE order).
 * @no_warn: Avoid printing message about failed allocation.
 *
 * This function allocates memory buffer for specified device. It uses
 * device specific contiguous memory area if available or the default
 * global one. Requires architecture specific dev_get_cma_area() helper
 * function.
 */
struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
				       unsigned int align, bool no_warn)
{}

/**
 * dma_release_from_contiguous() - release allocated pages
 * @dev:   Pointer to device for which the pages were allocated.
 * @pages: Allocated pages.
 * @count: Number of allocated pages.
 *
 * This function releases memory allocated by dma_alloc_from_contiguous().
 * It returns false when provided pages do not belong to contiguous area and
 * true otherwise.
 */
bool dma_release_from_contiguous(struct device *dev, struct page *pages,
				 int count)
{}

static struct page *cma_alloc_aligned(struct cma *cma, size_t size, gfp_t gfp)
{}

/**
 * dma_alloc_contiguous() - allocate contiguous pages
 * @dev:   Pointer to device for which the allocation is performed.
 * @size:  Requested allocation size.
 * @gfp:   Allocation flags.
 *
 * tries to use device specific contiguous memory area if available, or it
 * tries to use per-numa cma, if the allocation fails, it will fallback to
 * try default global one.
 *
 * Note that it bypass one-page size of allocations from the per-numa and
 * global area as the addresses within one page are always contiguous, so
 * there is no need to waste CMA pages for that kind; it also helps reduce
 * fragmentations.
 */
struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp)
{}

/**
 * dma_free_contiguous() - release allocated pages
 * @dev:   Pointer to device for which the pages were allocated.
 * @page:  Pointer to the allocated pages.
 * @size:  Size of allocated pages.
 *
 * This function releases memory allocated by dma_alloc_contiguous(). As the
 * cma_release returns false when provided pages do not belong to contiguous
 * area and true otherwise, this function then does a fallback __free_pages()
 * upon a false-return.
 */
void dma_free_contiguous(struct device *dev, struct page *page, size_t size)
{}

/*
 * Support for reserved memory regions defined in device tree
 */
#ifdef CONFIG_OF_RESERVED_MEM
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>

#undef pr_fmt
#define pr_fmt(fmt)

static int rmem_cma_device_init(struct reserved_mem *rmem, struct device *dev)
{}

static void rmem_cma_device_release(struct reserved_mem *rmem,
				    struct device *dev)
{}

static const struct reserved_mem_ops rmem_cma_ops =;

static int __init rmem_cma_setup(struct reserved_mem *rmem)
{}
RESERVEDMEM_OF_DECLARE(cma, "shared-dma-pool", rmem_cma_setup);
#endif