linux/kernel/futex/waitwake.c

// SPDX-License-Identifier: GPL-2.0-or-later

#include <linux/plist.h>
#include <linux/sched/task.h>
#include <linux/sched/signal.h>
#include <linux/freezer.h>

#include "futex.h"

/*
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
 *
 * The waker side modifies the user space value of the futex and calls
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
 *
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *
 *   waiters++; (a)
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
 *   if (uval == val)
 *     queue();
 *     unlock(hash_bucket(futex));
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
 *
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
 * to futex and the waiters read (see futex_hb_waiters_pending()).
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in futex_q_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
 */

bool __futex_wake_mark(struct futex_q *q)
{}

/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
 */
void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
{}

/*
 * Wake up waiters matching bitset queued on this futex (uaddr).
 */
int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{}

static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
		  int nr_wake, int nr_wake2, int op)
{}

static long futex_wait_restart(struct restart_block *restart);

/**
 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
			    struct hrtimer_sleeper *timeout)
{}

/**
 * futex_unqueue_multiple - Remove various futexes from their hash bucket
 * @v:	   The list of futexes to unqueue
 * @count: Number of futexes in the list
 *
 * Helper to unqueue a list of futexes. This can't fail.
 *
 * Return:
 *  - >=0 - Index of the last futex that was awoken;
 *  - -1  - No futex was awoken
 */
int futex_unqueue_multiple(struct futex_vector *v, int count)
{}

/**
 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
 * @vs:		The futex list to wait on
 * @count:	The size of the list
 * @woken:	Index of the last woken futex, if any. Used to notify the
 *		caller that it can return this index to userspace (return parameter)
 *
 * Prepare multiple futexes in a single step and enqueue them. This may fail if
 * the futex list is invalid or if any futex was already awoken. On success the
 * task is ready to interruptible sleep.
 *
 * Return:
 *  -  1 - One of the futexes was woken by another thread
 *  -  0 - Success
 *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
 */
int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
{}

/**
 * futex_sleep_multiple - Check sleeping conditions and sleep
 * @vs:    List of futexes to wait for
 * @count: Length of vs
 * @to:    Timeout
 *
 * Sleep if and only if the timeout hasn't expired and no futex on the list has
 * been woken up.
 */
static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
				 struct hrtimer_sleeper *to)
{}

/**
 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
 * @vs:		The list of futexes to wait on
 * @count:	The number of objects
 * @to:		Timeout before giving up and returning to userspace
 *
 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
 * sleeps on a group of futexes and returns on the first futex that is
 * wake, or after the timeout has elapsed.
 *
 * Return:
 *  - >=0 - Hint to the futex that was awoken
 *  - <0  - On error
 */
int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
			struct hrtimer_sleeper *to)
{}

/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @flags:	futex flags (FLAGS_SHARED, etc.)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held on success, and unlocked on failure.
 *
 * Return:
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
 */
int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
		     struct futex_q *q, struct futex_hash_bucket **hb)
{}

int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		 struct hrtimer_sleeper *to, u32 bitset)
{}

int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
{}

static long futex_wait_restart(struct restart_block *restart)
{}