linux/include/net/tcp.h

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Definitions for the TCP module.
 *
 * Version:	@(#)tcp.h	1.0.5	05/23/93
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <[email protected]>
 */
#ifndef _TCP_H
#define _TCP_H

#define FASTRETRANS_DEBUG

#include <linux/list.h>
#include <linux/tcp.h>
#include <linux/bug.h>
#include <linux/slab.h>
#include <linux/cache.h>
#include <linux/percpu.h>
#include <linux/skbuff.h>
#include <linux/kref.h>
#include <linux/ktime.h>
#include <linux/indirect_call_wrapper.h>

#include <net/inet_connection_sock.h>
#include <net/inet_timewait_sock.h>
#include <net/inet_hashtables.h>
#include <net/checksum.h>
#include <net/request_sock.h>
#include <net/sock_reuseport.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ip.h>
#include <net/tcp_states.h>
#include <net/tcp_ao.h>
#include <net/inet_ecn.h>
#include <net/dst.h>
#include <net/mptcp.h>

#include <linux/seq_file.h>
#include <linux/memcontrol.h>
#include <linux/bpf-cgroup.h>
#include <linux/siphash.h>

extern struct inet_hashinfo tcp_hashinfo;

DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
int tcp_orphan_count_sum(void);

DECLARE_PER_CPU(u32, tcp_tw_isn);

void tcp_time_wait(struct sock *sk, int state, int timeo);

#define MAX_TCP_HEADER
#define MAX_TCP_OPTION_SPACE
#define TCP_MIN_SND_MSS
#define TCP_MIN_GSO_SIZE

/*
 * Never offer a window over 32767 without using window scaling. Some
 * poor stacks do signed 16bit maths!
 */
#define MAX_TCP_WINDOW

/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
#define TCP_MIN_MSS

/* The initial MTU to use for probing */
#define TCP_BASE_MSS

/* probing interval, default to 10 minutes as per RFC4821 */
#define TCP_PROBE_INTERVAL

/* Specify interval when tcp mtu probing will stop */
#define TCP_PROBE_THRESHOLD

/* After receiving this amount of duplicate ACKs fast retransmit starts. */
#define TCP_FASTRETRANS_THRESH

/* Maximal number of ACKs sent quickly to accelerate slow-start. */
#define TCP_MAX_QUICKACKS

/* Maximal number of window scale according to RFC1323 */
#define TCP_MAX_WSCALE

/* urg_data states */
#define TCP_URG_VALID
#define TCP_URG_NOTYET
#define TCP_URG_READ

#define TCP_RETR1

#define TCP_RETR2

#define TCP_SYN_RETRIES

#define TCP_SYNACK_RETRIES

#define TCP_TIMEWAIT_LEN
#define TCP_FIN_TIMEOUT
                                 /* BSD style FIN_WAIT2 deadlock breaker.
				  * It used to be 3min, new value is 60sec,
				  * to combine FIN-WAIT-2 timeout with
				  * TIME-WAIT timer.
				  */
#define TCP_FIN_TIMEOUT_MAX

#define TCP_DELACK_MAX
static_assert();

#if HZ >= 100
#define TCP_DELACK_MIN
#define TCP_ATO_MIN
#else
#define TCP_DELACK_MIN
#define TCP_ATO_MIN
#endif
#define TCP_RTO_MAX
#define TCP_RTO_MIN
#define TCP_TIMEOUT_MIN

#define TCP_TIMEOUT_MIN_US

#define TCP_TIMEOUT_INIT
#define TCP_TIMEOUT_FALLBACK

#define TCP_RESOURCE_PROBE_INTERVAL
#define TCP_KEEPALIVE_TIME
#define TCP_KEEPALIVE_PROBES
#define TCP_KEEPALIVE_INTVL

#define MAX_TCP_KEEPIDLE
#define MAX_TCP_KEEPINTVL
#define MAX_TCP_KEEPCNT
#define MAX_TCP_SYNCNT

/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 */
#define TCP_PAWS_WRAP

#define TCP_PAWS_MSL
#define TCP_PAWS_WINDOW
/*
 *	TCP option
 */

#define TCPOPT_NOP
#define TCPOPT_EOL
#define TCPOPT_MSS
#define TCPOPT_WINDOW
#define TCPOPT_SACK_PERM
#define TCPOPT_SACK
#define TCPOPT_TIMESTAMP
#define TCPOPT_MD5SIG
#define TCPOPT_AO
#define TCPOPT_MPTCP
#define TCPOPT_FASTOPEN
#define TCPOPT_EXP
/* Magic number to be after the option value for sharing TCP
 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 */
#define TCPOPT_FASTOPEN_MAGIC
#define TCPOPT_SMC_MAGIC

/*
 *     TCP option lengths
 */

#define TCPOLEN_MSS
#define TCPOLEN_WINDOW
#define TCPOLEN_SACK_PERM
#define TCPOLEN_TIMESTAMP
#define TCPOLEN_MD5SIG
#define TCPOLEN_FASTOPEN_BASE
#define TCPOLEN_EXP_FASTOPEN_BASE
#define TCPOLEN_EXP_SMC_BASE

/* But this is what stacks really send out. */
#define TCPOLEN_TSTAMP_ALIGNED
#define TCPOLEN_WSCALE_ALIGNED
#define TCPOLEN_SACKPERM_ALIGNED
#define TCPOLEN_SACK_BASE
#define TCPOLEN_SACK_BASE_ALIGNED
#define TCPOLEN_SACK_PERBLOCK
#define TCPOLEN_MD5SIG_ALIGNED
#define TCPOLEN_MSS_ALIGNED
#define TCPOLEN_EXP_SMC_BASE_ALIGNED

/* Flags in tp->nonagle */
#define TCP_NAGLE_OFF
#define TCP_NAGLE_CORK
#define TCP_NAGLE_PUSH

/* TCP thin-stream limits */
#define TCP_THIN_LINEAR_RETRIES

/* TCP initial congestion window as per rfc6928 */
#define TCP_INIT_CWND

/* Bit Flags for sysctl_tcp_fastopen */
#define TFO_CLIENT_ENABLE
#define TFO_SERVER_ENABLE
#define TFO_CLIENT_NO_COOKIE

/* Accept SYN data w/o any cookie option */
#define TFO_SERVER_COOKIE_NOT_REQD

/* Force enable TFO on all listeners, i.e., not requiring the
 * TCP_FASTOPEN socket option.
 */
#define TFO_SERVER_WO_SOCKOPT1


/* sysctl variables for tcp */
extern int sysctl_tcp_max_orphans;
extern long sysctl_tcp_mem[3];

#define TCP_RACK_LOSS_DETECTION
#define TCP_RACK_STATIC_REO_WND
#define TCP_RACK_NO_DUPTHRESH

extern atomic_long_t tcp_memory_allocated;
DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);

extern struct percpu_counter tcp_sockets_allocated;
extern unsigned long tcp_memory_pressure;

/* optimized version of sk_under_memory_pressure() for TCP sockets */
static inline bool tcp_under_memory_pressure(const struct sock *sk)
{}
/*
 * The next routines deal with comparing 32 bit unsigned ints
 * and worry about wraparound (automatic with unsigned arithmetic).
 */

static inline bool before(__u32 seq1, __u32 seq2)
{}
#define after(seq2, seq1)

/* is s2<=s1<=s3 ? */
static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
{}

static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
{}

void sk_forced_mem_schedule(struct sock *sk, int size);

bool tcp_check_oom(const struct sock *sk, int shift);


extern struct proto tcp_prot;

#define TCP_INC_STATS(net, field)
#define __TCP_INC_STATS(net, field)
#define TCP_DEC_STATS(net, field)
#define TCP_ADD_STATS(net, field, val)

void tcp_tasklet_init(void);

int tcp_v4_err(struct sk_buff *skb, u32);

void tcp_shutdown(struct sock *sk, int how);

int tcp_v4_early_demux(struct sk_buff *skb);
int tcp_v4_rcv(struct sk_buff *skb);

void tcp_remove_empty_skb(struct sock *sk);
int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
			 size_t size, struct ubuf_info *uarg);
void tcp_splice_eof(struct socket *sock);
int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
int tcp_wmem_schedule(struct sock *sk, int copy);
void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
	      int size_goal);
void tcp_release_cb(struct sock *sk);
void tcp_wfree(struct sk_buff *skb);
void tcp_write_timer_handler(struct sock *sk);
void tcp_delack_timer_handler(struct sock *sk);
int tcp_ioctl(struct sock *sk, int cmd, int *karg);
enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
void tcp_rcv_space_adjust(struct sock *sk);
int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
void tcp_twsk_destructor(struct sock *sk);
void tcp_twsk_purge(struct list_head *net_exit_list);
ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
			struct pipe_inode_info *pipe, size_t len,
			unsigned int flags);
struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
				     bool force_schedule);

static inline void tcp_dec_quickack_mode(struct sock *sk)
{}

#define TCP_ECN_OK
#define TCP_ECN_QUEUE_CWR
#define TCP_ECN_DEMAND_CWR
#define TCP_ECN_SEEN

enum tcp_tw_status {};


enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
					      struct sk_buff *skb,
					      const struct tcphdr *th,
					      u32 *tw_isn);
struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
			   struct request_sock *req, bool fastopen,
			   bool *lost_race);
enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
				       struct sk_buff *skb);
void tcp_enter_loss(struct sock *sk);
void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
void tcp_clear_retrans(struct tcp_sock *tp);
void tcp_update_metrics(struct sock *sk);
void tcp_init_metrics(struct sock *sk);
void tcp_metrics_init(void);
bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
void __tcp_close(struct sock *sk, long timeout);
void tcp_close(struct sock *sk, long timeout);
void tcp_init_sock(struct sock *sk);
void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
__poll_t tcp_poll(struct file *file, struct socket *sock,
		      struct poll_table_struct *wait);
int do_tcp_getsockopt(struct sock *sk, int level,
		      int optname, sockptr_t optval, sockptr_t optlen);
int tcp_getsockopt(struct sock *sk, int level, int optname,
		   char __user *optval, int __user *optlen);
bool tcp_bpf_bypass_getsockopt(int level, int optname);
int do_tcp_setsockopt(struct sock *sk, int level, int optname,
		      sockptr_t optval, unsigned int optlen);
int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
		   unsigned int optlen);
void tcp_set_keepalive(struct sock *sk, int val);
void tcp_syn_ack_timeout(const struct request_sock *req);
int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
		int flags, int *addr_len);
int tcp_set_rcvlowat(struct sock *sk, int val);
int tcp_set_window_clamp(struct sock *sk, int val);
void tcp_update_recv_tstamps(struct sk_buff *skb,
			     struct scm_timestamping_internal *tss);
void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
			struct scm_timestamping_internal *tss);
void tcp_data_ready(struct sock *sk);
#ifdef CONFIG_MMU
int tcp_mmap(struct file *file, struct socket *sock,
	     struct vm_area_struct *vma);
#endif
void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
		       struct tcp_options_received *opt_rx,
		       int estab, struct tcp_fastopen_cookie *foc);

/*
 *	BPF SKB-less helpers
 */
u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
			 struct tcphdr *th, u32 *cookie);
u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
			 struct tcphdr *th, u32 *cookie);
u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
			  const struct tcp_request_sock_ops *af_ops,
			  struct sock *sk, struct tcphdr *th);
/*
 *	TCP v4 functions exported for the inet6 API
 */

void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
void tcp_v4_mtu_reduced(struct sock *sk);
void tcp_req_err(struct sock *sk, u32 seq, bool abort);
void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
struct sock *tcp_create_openreq_child(const struct sock *sk,
				      struct request_sock *req,
				      struct sk_buff *skb);
void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
				  struct request_sock *req,
				  struct dst_entry *dst,
				  struct request_sock *req_unhash,
				  bool *own_req);
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
int tcp_connect(struct sock *sk);
enum tcp_synack_type {};
struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
				struct request_sock *req,
				struct tcp_fastopen_cookie *foc,
				enum tcp_synack_type synack_type,
				struct sk_buff *syn_skb);
int tcp_disconnect(struct sock *sk, int flags);

void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);

/* From syncookies.c */
struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
				 struct request_sock *req,
				 struct dst_entry *dst);
int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
					    struct sock *sk, struct sk_buff *skb,
					    struct tcp_options_received *tcp_opt,
					    int mss, u32 tsoff);

#if IS_ENABLED(CONFIG_BPF)
struct bpf_tcp_req_attrs {};
#endif

#ifdef CONFIG_SYN_COOKIES

/* Syncookies use a monotonic timer which increments every 60 seconds.
 * This counter is used both as a hash input and partially encoded into
 * the cookie value.  A cookie is only validated further if the delta
 * between the current counter value and the encoded one is less than this,
 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 * the counter advances immediately after a cookie is generated).
 */
#define MAX_SYNCOOKIE_AGE
#define TCP_SYNCOOKIE_PERIOD
#define TCP_SYNCOOKIE_VALID

/* syncookies: remember time of last synqueue overflow
 * But do not dirty this field too often (once per second is enough)
 * It is racy as we do not hold a lock, but race is very minor.
 */
static inline void tcp_synq_overflow(const struct sock *sk)
{}

/* syncookies: no recent synqueue overflow on this listening socket? */
static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
{}

static inline u32 tcp_cookie_time(void)
{}

/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
{}

u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
			      u16 *mssp);
__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
u64 cookie_init_timestamp(struct request_sock *req, u64 now);
bool cookie_timestamp_decode(const struct net *net,
			     struct tcp_options_received *opt);

static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
{}

#if IS_ENABLED(CONFIG_BPF)
static inline bool cookie_bpf_ok(struct sk_buff *skb)
{}

struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
#else
static inline bool cookie_bpf_ok(struct sk_buff *skb)
{
	return false;
}

static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
						    struct sk_buff *skb)
{
	return NULL;
}
#endif

/* From net/ipv6/syncookies.c */
int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);

u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
			      const struct tcphdr *th, u16 *mssp);
__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
#endif
/* tcp_output.c */

void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
			       int nonagle);
int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
void tcp_retransmit_timer(struct sock *sk);
void tcp_xmit_retransmit_queue(struct sock *);
void tcp_simple_retransmit(struct sock *);
void tcp_enter_recovery(struct sock *sk, bool ece_ack);
int tcp_trim_head(struct sock *, struct sk_buff *, u32);
enum tcp_queue {};
int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
		 struct sk_buff *skb, u32 len,
		 unsigned int mss_now, gfp_t gfp);

void tcp_send_probe0(struct sock *);
int tcp_write_wakeup(struct sock *, int mib);
void tcp_send_fin(struct sock *sk);
void tcp_send_active_reset(struct sock *sk, gfp_t priority,
			   enum sk_rst_reason reason);
int tcp_send_synack(struct sock *);
void tcp_push_one(struct sock *, unsigned int mss_now);
void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
void tcp_send_ack(struct sock *sk);
void tcp_send_delayed_ack(struct sock *sk);
void tcp_send_loss_probe(struct sock *sk);
bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
void tcp_skb_collapse_tstamp(struct sk_buff *skb,
			     const struct sk_buff *next_skb);

/* tcp_input.c */
void tcp_rearm_rto(struct sock *sk);
void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
void tcp_done_with_error(struct sock *sk, int err);
void tcp_reset(struct sock *sk, struct sk_buff *skb);
void tcp_fin(struct sock *sk);
void tcp_check_space(struct sock *sk);
void tcp_sack_compress_send_ack(struct sock *sk);

/* tcp_timer.c */
void tcp_init_xmit_timers(struct sock *);
static inline void tcp_clear_xmit_timers(struct sock *sk)
{}

unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
unsigned int tcp_current_mss(struct sock *sk);
u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);

/* Bound MSS / TSO packet size with the half of the window */
static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
{}

/* tcp.c */
void tcp_get_info(struct sock *, struct tcp_info *);

/* Read 'sendfile()'-style from a TCP socket */
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
		  sk_read_actor_t recv_actor);
int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
void tcp_read_done(struct sock *sk, size_t len);

void tcp_initialize_rcv_mss(struct sock *sk);

int tcp_mtu_to_mss(struct sock *sk, int pmtu);
int tcp_mss_to_mtu(struct sock *sk, int mss);
void tcp_mtup_init(struct sock *sk);

static inline void tcp_bound_rto(struct sock *sk)
{}

static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
{}

static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
{}

static inline void tcp_fast_path_on(struct tcp_sock *tp)
{}

static inline void tcp_fast_path_check(struct sock *sk)
{}

u32 tcp_delack_max(const struct sock *sk);

/* Compute the actual rto_min value */
static inline u32 tcp_rto_min(const struct sock *sk)
{}

static inline u32 tcp_rto_min_us(const struct sock *sk)
{}

static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
{}

/* Minimum RTT in usec. ~0 means not available. */
static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
{}

/* Compute the actual receive window we are currently advertising.
 * Rcv_nxt can be after the window if our peer push more data
 * than the offered window.
 */
static inline u32 tcp_receive_window(const struct tcp_sock *tp)
{}

/* Choose a new window, without checks for shrinking, and without
 * scaling applied to the result.  The caller does these things
 * if necessary.  This is a "raw" window selection.
 */
u32 __tcp_select_window(struct sock *sk);

void tcp_send_window_probe(struct sock *sk);

/* TCP uses 32bit jiffies to save some space.
 * Note that this is different from tcp_time_stamp, which
 * historically has been the same until linux-4.13.
 */
#define tcp_jiffies32

/*
 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 * It is no longer tied to jiffies, but to 1 ms clock.
 * Note: double check if you want to use tcp_jiffies32 instead of this.
 */
#define TCP_TS_HZ

static inline u64 tcp_clock_ns(void)
{}

static inline u64 tcp_clock_us(void)
{}

static inline u64 tcp_clock_ms(void)
{}

/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 * or usec resolution. Each socket carries a flag to select one or other
 * resolution, as the route attribute could change anytime.
 * Each flow must stick to initial resolution.
 */
static inline u32 tcp_clock_ts(bool usec_ts)
{}

static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
{}

static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
{}

void tcp_mstamp_refresh(struct tcp_sock *tp);

static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
{}

/* provide the departure time in us unit */
static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
{}

/* Provide skb TSval in usec or ms unit */
static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
{}

static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
{}

static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
{}

#define tcp_flag_byte(th)

#define TCPHDR_FIN
#define TCPHDR_SYN
#define TCPHDR_RST
#define TCPHDR_PSH
#define TCPHDR_ACK
#define TCPHDR_URG
#define TCPHDR_ECE
#define TCPHDR_CWR

#define TCPHDR_SYN_ECN

/* State flags for sacked in struct tcp_skb_cb */
enum tcp_skb_cb_sacked_flags {};

/* This is what the send packet queuing engine uses to pass
 * TCP per-packet control information to the transmission code.
 * We also store the host-order sequence numbers in here too.
 * This is 44 bytes if IPV6 is enabled.
 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 */
struct tcp_skb_cb {};

#define TCP_SKB_CB(__skb)

extern const struct inet_connection_sock_af_ops ipv4_specific;

#if IS_ENABLED(CONFIG_IPV6)
/* This is the variant of inet6_iif() that must be used by TCP,
 * as TCP moves IP6CB into a different location in skb->cb[]
 */
static inline int tcp_v6_iif(const struct sk_buff *skb)
{}

static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
{}

/* TCP_SKB_CB reference means this can not be used from early demux */
static inline int tcp_v6_sdif(const struct sk_buff *skb)
{}

extern const struct inet_connection_sock_af_ops ipv6_specific;

INDIRECT_CALLABLE_DECLARE();
INDIRECT_CALLABLE_DECLARE();
void tcp_v6_early_demux(struct sk_buff *skb);

#endif

/* TCP_SKB_CB reference means this can not be used from early demux */
static inline int tcp_v4_sdif(struct sk_buff *skb)
{}

/* Due to TSO, an SKB can be composed of multiple actual
 * packets.  To keep these tracked properly, we use this.
 */
static inline int tcp_skb_pcount(const struct sk_buff *skb)
{}

static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
{}

static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
{}

/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
static inline int tcp_skb_mss(const struct sk_buff *skb)
{}

static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
{}

static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
					const struct sk_buff *from)
{}

static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
					   const struct sk_buff *from)
{}

/* Events passed to congestion control interface */
enum tcp_ca_event {};

/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
enum tcp_ca_ack_event_flags {};

/*
 * Interface for adding new TCP congestion control handlers
 */
#define TCP_CA_NAME_MAX
#define TCP_CA_MAX
#define TCP_CA_BUF_MAX

#define TCP_CA_UNSPEC

/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
#define TCP_CONG_NON_RESTRICTED
/* Requires ECN/ECT set on all packets */
#define TCP_CONG_NEEDS_ECN
#define TCP_CONG_MASK

tcp_cc_info;

struct ack_sample {};

/* A rate sample measures the number of (original/retransmitted) data
 * packets delivered "delivered" over an interval of time "interval_us".
 * The tcp_rate.c code fills in the rate sample, and congestion
 * control modules that define a cong_control function to run at the end
 * of ACK processing can optionally chose to consult this sample when
 * setting cwnd and pacing rate.
 * A sample is invalid if "delivered" or "interval_us" is negative.
 */
struct rate_sample {};

struct tcp_congestion_ops {} ____cacheline_aligned_in_smp;

int tcp_register_congestion_control(struct tcp_congestion_ops *type);
void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
int tcp_update_congestion_control(struct tcp_congestion_ops *type,
				  struct tcp_congestion_ops *old_type);
int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);

void tcp_assign_congestion_control(struct sock *sk);
void tcp_init_congestion_control(struct sock *sk);
void tcp_cleanup_congestion_control(struct sock *sk);
int tcp_set_default_congestion_control(struct net *net, const char *name);
void tcp_get_default_congestion_control(struct net *net, char *name);
void tcp_get_available_congestion_control(char *buf, size_t len);
void tcp_get_allowed_congestion_control(char *buf, size_t len);
int tcp_set_allowed_congestion_control(char *allowed);
int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
			       bool cap_net_admin);
u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);

u32 tcp_reno_ssthresh(struct sock *sk);
u32 tcp_reno_undo_cwnd(struct sock *sk);
void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
extern struct tcp_congestion_ops tcp_reno;

struct tcp_congestion_ops *tcp_ca_find(const char *name);
struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
#ifdef CONFIG_INET
char *tcp_ca_get_name_by_key(u32 key, char *buffer);
#else
static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
{
	return NULL;
}
#endif

static inline bool tcp_ca_needs_ecn(const struct sock *sk)
{}

static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
{}

/* From tcp_cong.c */
void tcp_set_ca_state(struct sock *sk, const u8 ca_state);

/* From tcp_rate.c */
void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
			    struct rate_sample *rs);
void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
		  bool is_sack_reneg, struct rate_sample *rs);
void tcp_rate_check_app_limited(struct sock *sk);

static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
{}

/* These functions determine how the current flow behaves in respect of SACK
 * handling. SACK is negotiated with the peer, and therefore it can vary
 * between different flows.
 *
 * tcp_is_sack - SACK enabled
 * tcp_is_reno - No SACK
 */
static inline int tcp_is_sack(const struct tcp_sock *tp)
{}

static inline bool tcp_is_reno(const struct tcp_sock *tp)
{}

static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
{}

/* This determines how many packets are "in the network" to the best
 * of our knowledge.  In many cases it is conservative, but where
 * detailed information is available from the receiver (via SACK
 * blocks etc.) we can make more aggressive calculations.
 *
 * Use this for decisions involving congestion control, use just
 * tp->packets_out to determine if the send queue is empty or not.
 *
 * Read this equation as:
 *
 *	"Packets sent once on transmission queue" MINUS
 *	"Packets left network, but not honestly ACKed yet" PLUS
 *	"Packets fast retransmitted"
 */
static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
{}

#define TCP_INFINITE_SSTHRESH

static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
{}

static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
{}

static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
{}

static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
{}

static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
{}

/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
 * The exception is cwnd reduction phase, when cwnd is decreasing towards
 * ssthresh.
 */
static inline __u32 tcp_current_ssthresh(const struct sock *sk)
{}

/* Use define here intentionally to get WARN_ON location shown at the caller */
#define tcp_verify_left_out(tp)

void tcp_enter_cwr(struct sock *sk);
__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);

/* The maximum number of MSS of available cwnd for which TSO defers
 * sending if not using sysctl_tcp_tso_win_divisor.
 */
static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
{}

/* Returns end sequence number of the receiver's advertised window */
static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
{}

/* We follow the spirit of RFC2861 to validate cwnd but implement a more
 * flexible approach. The RFC suggests cwnd should not be raised unless
 * it was fully used previously. And that's exactly what we do in
 * congestion avoidance mode. But in slow start we allow cwnd to grow
 * as long as the application has used half the cwnd.
 * Example :
 *    cwnd is 10 (IW10), but application sends 9 frames.
 *    We allow cwnd to reach 18 when all frames are ACKed.
 * This check is safe because it's as aggressive as slow start which already
 * risks 100% overshoot. The advantage is that we discourage application to
 * either send more filler packets or data to artificially blow up the cwnd
 * usage, and allow application-limited process to probe bw more aggressively.
 */
static inline bool tcp_is_cwnd_limited(const struct sock *sk)
{}

/* BBR congestion control needs pacing.
 * Same remark for SO_MAX_PACING_RATE.
 * sch_fq packet scheduler is efficiently handling pacing,
 * but is not always installed/used.
 * Return true if TCP stack should pace packets itself.
 */
static inline bool tcp_needs_internal_pacing(const struct sock *sk)
{}

/* Estimates in how many jiffies next packet for this flow can be sent.
 * Scheduling a retransmit timer too early would be silly.
 */
static inline unsigned long tcp_pacing_delay(const struct sock *sk)
{}

static inline void tcp_reset_xmit_timer(struct sock *sk,
					const int what,
					unsigned long when,
					const unsigned long max_when)
{}

/* Something is really bad, we could not queue an additional packet,
 * because qdisc is full or receiver sent a 0 window, or we are paced.
 * We do not want to add fuel to the fire, or abort too early,
 * so make sure the timer we arm now is at least 200ms in the future,
 * regardless of current icsk_rto value (as it could be ~2ms)
 */
static inline unsigned long tcp_probe0_base(const struct sock *sk)
{}

/* Variant of inet_csk_rto_backoff() used for zero window probes */
static inline unsigned long tcp_probe0_when(const struct sock *sk,
					    unsigned long max_when)
{}

static inline void tcp_check_probe_timer(struct sock *sk)
{}

static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
{}

static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
{}

/*
 * Calculate(/check) TCP checksum
 */
static inline __sum16 tcp_v4_check(int len, __be32 saddr,
				   __be32 daddr, __wsum base)
{}

static inline bool tcp_checksum_complete(struct sk_buff *skb)
{}

bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
		     enum skb_drop_reason *reason);


int tcp_filter(struct sock *sk, struct sk_buff *skb);
void tcp_set_state(struct sock *sk, int state);
void tcp_done(struct sock *sk);
int tcp_abort(struct sock *sk, int err);

static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
{}

void tcp_cwnd_restart(struct sock *sk, s32 delta);

static inline void tcp_slow_start_after_idle_check(struct sock *sk)
{}

/* Determine a window scaling and initial window to offer. */
void tcp_select_initial_window(const struct sock *sk, int __space,
			       __u32 mss, __u32 *rcv_wnd,
			       __u32 *window_clamp, int wscale_ok,
			       __u8 *rcv_wscale, __u32 init_rcv_wnd);

static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
{}

static inline int tcp_win_from_space(const struct sock *sk, int space)
{}

/* inverse of __tcp_win_from_space() */
static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
{}

static inline int tcp_space_from_win(const struct sock *sk, int win)
{}

/* Assume a 50% default for skb->len/skb->truesize ratio.
 * This may be adjusted later in tcp_measure_rcv_mss().
 */
#define TCP_DEFAULT_SCALING_RATIO

static inline void tcp_scaling_ratio_init(struct sock *sk)
{}

/* Note: caller must be prepared to deal with negative returns */
static inline int tcp_space(const struct sock *sk)
{}

static inline int tcp_full_space(const struct sock *sk)
{}

static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
{}

static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
{}

void tcp_cleanup_rbuf(struct sock *sk, int copied);
void __tcp_cleanup_rbuf(struct sock *sk, int copied);


/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
 * If 87.5 % (7/8) of the space has been consumed, we want to override
 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
 * len/truesize ratio.
 */
static inline bool tcp_rmem_pressure(const struct sock *sk)
{}

static inline bool tcp_epollin_ready(const struct sock *sk, int target)
{}

extern void tcp_openreq_init_rwin(struct request_sock *req,
				  const struct sock *sk_listener,
				  const struct dst_entry *dst);

void tcp_enter_memory_pressure(struct sock *sk);
void tcp_leave_memory_pressure(struct sock *sk);

static inline int keepalive_intvl_when(const struct tcp_sock *tp)
{}

static inline int keepalive_time_when(const struct tcp_sock *tp)
{}

static inline int keepalive_probes(const struct tcp_sock *tp)
{}

static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
{}

static inline int tcp_fin_time(const struct sock *sk)
{}

static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
				  int paws_win)
{}

static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
				   int rst)
{}

bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
			  int mib_idx, u32 *last_oow_ack_time);

static inline void tcp_mib_init(struct net *net)
{}

/* from STCP */
static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
{}

static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
{}

#define tcp_md5_addr

/* - key database */
struct tcp_md5sig_key {};

/* - sock block */
struct tcp_md5sig_info {};

/* - pseudo header */
struct tcp4_pseudohdr {};

struct tcp6_pseudohdr {};

tcp_md5sum_block;

/*
 * struct tcp_sigpool - per-CPU pool of ahash_requests
 * @scratch: per-CPU temporary area, that can be used between
 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
 *	     crypto request
 * @req: pre-allocated ahash request
 */
struct tcp_sigpool {};

int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
void tcp_sigpool_get(unsigned int id);
void tcp_sigpool_release(unsigned int id);
int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
			      const struct sk_buff *skb,
			      unsigned int header_len);

/**
 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
 * @c: returned tcp_sigpool for usage (uninitialized on failure)
 *
 * Returns 0 on success, error otherwise.
 */
int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
/**
 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
 */
void tcp_sigpool_end(struct tcp_sigpool *c);
size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
/* - functions */
int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
			const struct sock *sk, const struct sk_buff *skb);
int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
		   int family, u8 prefixlen, int l3index, u8 flags,
		   const u8 *newkey, u8 newkeylen);
int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
		     int family, u8 prefixlen, int l3index,
		     struct tcp_md5sig_key *key);

int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
		   int family, u8 prefixlen, int l3index, u8 flags);
void tcp_clear_md5_list(struct sock *sk);
struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
					 const struct sock *addr_sk);

#ifdef CONFIG_TCP_MD5SIG
struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
					   const union tcp_md5_addr *addr,
					   int family, bool any_l3index);
static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock *sk, int l3index,
		  const union tcp_md5_addr *addr, int family)
{}

static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock *sk,
			      const union tcp_md5_addr *addr, int family)
{}

#define tcp_twsk_md5_key(twsk)
#else
static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock *sk, int l3index,
		  const union tcp_md5_addr *addr, int family)
{
	return NULL;
}

static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock *sk,
			      const union tcp_md5_addr *addr, int family)
{
	return NULL;
}

#define tcp_twsk_md5_key
#endif

int tcp_md5_alloc_sigpool(void);
void tcp_md5_release_sigpool(void);
void tcp_md5_add_sigpool(void);
extern int tcp_md5_sigpool_id;

int tcp_md5_hash_key(struct tcp_sigpool *hp,
		     const struct tcp_md5sig_key *key);

/* From tcp_fastopen.c */
void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
			    struct tcp_fastopen_cookie *cookie);
void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
			    u16 try_exp);
struct tcp_fastopen_request {};
void tcp_free_fastopen_req(struct tcp_sock *tp);
void tcp_fastopen_destroy_cipher(struct sock *sk);
void tcp_fastopen_ctx_destroy(struct net *net);
int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
			      void *primary_key, void *backup_key);
int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
			    u64 *key);
void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
			      struct request_sock *req,
			      struct tcp_fastopen_cookie *foc,
			      const struct dst_entry *dst);
void tcp_fastopen_init_key_once(struct net *net);
bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
			     struct tcp_fastopen_cookie *cookie);
bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
#define TCP_FASTOPEN_KEY_LENGTH
#define TCP_FASTOPEN_KEY_MAX
#define TCP_FASTOPEN_KEY_BUF_LENGTH

/* Fastopen key context */
struct tcp_fastopen_context {};

void tcp_fastopen_active_disable(struct sock *sk);
bool tcp_fastopen_active_should_disable(struct sock *sk);
void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);

/* Caller needs to wrap with rcu_read_(un)lock() */
static inline
struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
{}

static inline
bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
			       const struct tcp_fastopen_cookie *orig)
{}

static inline
int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
{}

/* Latencies incurred by various limits for a sender. They are
 * chronograph-like stats that are mutually exclusive.
 */
enum tcp_chrono {};

void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);

/* This helper is needed, because skb->tcp_tsorted_anchor uses
 * the same memory storage than skb->destructor/_skb_refdst
 */
static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
{}

#define tcp_skb_tsorted_save(skb)

#define tcp_skb_tsorted_restore(skb)

void tcp_write_queue_purge(struct sock *sk);

static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
{}

static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
{}

static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
{}

#define tcp_for_write_queue_from_safe(skb, tmp, sk)

static inline struct sk_buff *tcp_send_head(const struct sock *sk)
{}

static inline bool tcp_skb_is_last(const struct sock *sk,
				   const struct sk_buff *skb)
{}

/**
 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
 * @sk: socket
 *
 * Since the write queue can have a temporary empty skb in it,
 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
 */
static inline bool tcp_write_queue_empty(const struct sock *sk)
{}

static inline bool tcp_rtx_queue_empty(const struct sock *sk)
{}

static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
{}

static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
{}

/* Insert new before skb on the write queue of sk.  */
static inline void tcp_insert_write_queue_before(struct sk_buff *new,
						  struct sk_buff *skb,
						  struct sock *sk)
{}

static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
{}

void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);

static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
{}

static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
{}

static inline void tcp_write_collapse_fence(struct sock *sk)
{}

static inline void tcp_push_pending_frames(struct sock *sk)
{}

/* Start sequence of the skb just after the highest skb with SACKed
 * bit, valid only if sacked_out > 0 or when the caller has ensured
 * validity by itself.
 */
static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
{}

static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
{}

static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
{}

static inline void tcp_highest_sack_reset(struct sock *sk)
{}

/* Called when old skb is about to be deleted and replaced by new skb */
static inline void tcp_highest_sack_replace(struct sock *sk,
					    struct sk_buff *old,
					    struct sk_buff *new)
{}

/* This helper checks if socket has IP_TRANSPARENT set */
static inline bool inet_sk_transparent(const struct sock *sk)
{}

/* Determines whether this is a thin stream (which may suffer from
 * increased latency). Used to trigger latency-reducing mechanisms.
 */
static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
{}

/* /proc */
enum tcp_seq_states {};

void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
void tcp_seq_stop(struct seq_file *seq, void *v);

struct tcp_seq_afinfo {};

struct tcp_iter_state {};

extern struct request_sock_ops tcp_request_sock_ops;
extern struct request_sock_ops tcp6_request_sock_ops;

void tcp_v4_destroy_sock(struct sock *sk);

struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
				netdev_features_t features);
struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
				struct tcphdr *th);
INDIRECT_CALLABLE_DECLARE();
INDIRECT_CALLABLE_DECLARE();
INDIRECT_CALLABLE_DECLARE();
INDIRECT_CALLABLE_DECLARE();
#ifdef CONFIG_INET
void tcp_gro_complete(struct sk_buff *skb);
#else
static inline void tcp_gro_complete(struct sk_buff *skb) { }
#endif

void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);

static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
{}

bool tcp_stream_memory_free(const struct sock *sk, int wake);

#ifdef CONFIG_PROC_FS
int tcp4_proc_init(void);
void tcp4_proc_exit(void);
#endif

int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
int tcp_conn_request(struct request_sock_ops *rsk_ops,
		     const struct tcp_request_sock_ops *af_ops,
		     struct sock *sk, struct sk_buff *skb);

/* TCP af-specific functions */
struct tcp_sock_af_ops {};

struct tcp_request_sock_ops {};

extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
#if IS_ENABLED(CONFIG_IPV6)
extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
#endif

#ifdef CONFIG_SYN_COOKIES
static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
					 const struct sock *sk, struct sk_buff *skb,
					 __u16 *mss)
{}
#else
static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
					 const struct sock *sk, struct sk_buff *skb,
					 __u16 *mss)
{
	return 0;
}
#endif

struct tcp_key {};

static inline void tcp_get_current_key(const struct sock *sk,
				       struct tcp_key *out)
{}

static inline bool tcp_key_is_md5(const struct tcp_key *key)
{}

static inline bool tcp_key_is_ao(const struct tcp_key *key)
{}

int tcpv4_offload_init(void);

void tcp_v4_init(void);
void tcp_init(void);

/* tcp_recovery.c */
void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
				u32 reo_wnd);
extern bool tcp_rack_mark_lost(struct sock *sk);
extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
			     u64 xmit_time);
extern void tcp_rack_reo_timeout(struct sock *sk);
extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);

/* tcp_plb.c */

/*
 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
 * expects cong_ratio which represents fraction of traffic that experienced
 * congestion over a single RTT. In order to avoid floating point operations,
 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
 */
#define TCP_PLB_SCALE

/* State for PLB (Protective Load Balancing) for a single TCP connection. */
struct tcp_plb_state {};

static inline void tcp_plb_init(const struct sock *sk,
				struct tcp_plb_state *plb)
{}
void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
			  const int cong_ratio);
void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);

/* At how many usecs into the future should the RTO fire? */
static inline s64 tcp_rto_delta_us(const struct sock *sk)
{}

/*
 * Save and compile IPv4 options, return a pointer to it
 */
static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
							 struct sk_buff *skb)
{}

/* locally generated TCP pure ACKs have skb->truesize == 2
 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
 * This is much faster than dissecting the packet to find out.
 * (Think of GRE encapsulations, IPv4, IPv6, ...)
 */
static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
{}

static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
{}

static inline int tcp_inq(struct sock *sk)
{}

int tcp_peek_len(struct socket *sock);

static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
{}

/*
 * TCP listen path runs lockless.
 * We forced "struct sock" to be const qualified to make sure
 * we don't modify one of its field by mistake.
 * Here, we increment sk_drops which is an atomic_t, so we can safely
 * make sock writable again.
 */
static inline void tcp_listendrop(const struct sock *sk)
{}

enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);

/*
 * Interface for adding Upper Level Protocols over TCP
 */

#define TCP_ULP_NAME_MAX
#define TCP_ULP_MAX
#define TCP_ULP_BUF_MAX

struct tcp_ulp_ops {};
int tcp_register_ulp(struct tcp_ulp_ops *type);
void tcp_unregister_ulp(struct tcp_ulp_ops *type);
int tcp_set_ulp(struct sock *sk, const char *name);
void tcp_get_available_ulp(char *buf, size_t len);
void tcp_cleanup_ulp(struct sock *sk);
void tcp_update_ulp(struct sock *sk, struct proto *p,
		    void (*write_space)(struct sock *sk));

#define MODULE_ALIAS_TCP_ULP(name)

#ifdef CONFIG_NET_SOCK_MSG
struct sk_msg;
struct sk_psock;

#ifdef CONFIG_BPF_SYSCALL
int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
#endif /* CONFIG_BPF_SYSCALL */

#ifdef CONFIG_INET
void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
#else
static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
{
}
#endif

int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
			  struct sk_msg *msg, u32 bytes, int flags);
#endif /* CONFIG_NET_SOCK_MSG */

#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
{
}
#endif

#ifdef CONFIG_CGROUP_BPF
static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
				      struct sk_buff *skb,
				      unsigned int end_offset)
{}
#else
static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
				      struct sk_buff *skb,
				      unsigned int end_offset)
{
}
#endif

/* Call BPF_SOCK_OPS program that returns an int. If the return value
 * is < 0, then the BPF op failed (for example if the loaded BPF
 * program does not support the chosen operation or there is no BPF
 * program loaded).
 */
#ifdef CONFIG_BPF
static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
{}

static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
{}

static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
				    u32 arg3)
{}

#else
static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
{
	return -EPERM;
}

static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
{
	return -EPERM;
}

static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
				    u32 arg3)
{
	return -EPERM;
}

#endif

static inline u32 tcp_timeout_init(struct sock *sk)
{}

static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
{}

static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
{}

static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
{}

#if IS_ENABLED(CONFIG_SMC)
extern struct static_key_false tcp_have_smc;
#endif

#if IS_ENABLED(CONFIG_TLS_DEVICE)
void clean_acked_data_enable(struct inet_connection_sock *icsk,
			     void (*cad)(struct sock *sk, u32 ack_seq));
void clean_acked_data_disable(struct inet_connection_sock *icsk);
void clean_acked_data_flush(void);
#endif

DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
static inline void tcp_add_tx_delay(struct sk_buff *skb,
				    const struct tcp_sock *tp)
{}

/* Compute Earliest Departure Time for some control packets
 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
 */
static inline u64 tcp_transmit_time(const struct sock *sk)
{}

static inline int tcp_parse_auth_options(const struct tcphdr *th,
		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
{}

static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
				   int family, int l3index, bool stat_inc)
{}

enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
		const struct request_sock *req, const struct sk_buff *skb,
		const void *saddr, const void *daddr,
		int family, int dif, int sdif);

#endif	/* _TCP_H */