linux/mm/oom_kill.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 *  linux/mm/oom_kill.c
 * 
 *  Copyright (C)  1998,2000  Rik van Riel
 *	Thanks go out to Claus Fischer for some serious inspiration and
 *	for goading me into coding this file...
 *  Copyright (C)  2010  Google, Inc.
 *	Rewritten by David Rientjes
 *
 *  The routines in this file are used to kill a process when
 *  we're seriously out of memory. This gets called from __alloc_pages()
 *  in mm/page_alloc.c when we really run out of memory.
 *
 *  Since we won't call these routines often (on a well-configured
 *  machine) this file will double as a 'coding guide' and a signpost
 *  for newbie kernel hackers. It features several pointers to major
 *  kernel subsystems and hints as to where to find out what things do.
 */

#include <linux/oom.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/task.h>
#include <linux/sched/debug.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/cpuset.h>
#include <linux/export.h>
#include <linux/notifier.h>
#include <linux/memcontrol.h>
#include <linux/mempolicy.h>
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/freezer.h>
#include <linux/ftrace.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/init.h>
#include <linux/mmu_notifier.h>
#include <linux/cred.h>

#include <asm/tlb.h>
#include "internal.h"
#include "slab.h"

#define CREATE_TRACE_POINTS
#include <trace/events/oom.h>

static int sysctl_panic_on_oom;
static int sysctl_oom_kill_allocating_task;
static int sysctl_oom_dump_tasks =;

/*
 * Serializes oom killer invocations (out_of_memory()) from all contexts to
 * prevent from over eager oom killing (e.g. when the oom killer is invoked
 * from different domains).
 *
 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
 * and mark_oom_victim
 */
DEFINE_MUTEX();
/* Serializes oom_score_adj and oom_score_adj_min updates */
DEFINE_MUTEX();

static inline bool is_memcg_oom(struct oom_control *oc)
{}

#ifdef CONFIG_NUMA
/**
 * oom_cpuset_eligible() - check task eligibility for kill
 * @start: task struct of which task to consider
 * @oc: pointer to struct oom_control
 *
 * Task eligibility is determined by whether or not a candidate task, @tsk,
 * shares the same mempolicy nodes as current if it is bound by such a policy
 * and whether or not it has the same set of allowed cpuset nodes.
 *
 * This function is assuming oom-killer context and 'current' has triggered
 * the oom-killer.
 */
static bool oom_cpuset_eligible(struct task_struct *start,
				struct oom_control *oc)
{}
#else
static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
{
	return true;
}
#endif /* CONFIG_NUMA */

/*
 * The process p may have detached its own ->mm while exiting or through
 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 * task_lock() held.
 */
struct task_struct *find_lock_task_mm(struct task_struct *p)
{}

/*
 * order == -1 means the oom kill is required by sysrq, otherwise only
 * for display purposes.
 */
static inline bool is_sysrq_oom(struct oom_control *oc)
{}

/* return true if the task is not adequate as candidate victim task. */
static bool oom_unkillable_task(struct task_struct *p)
{}

/*
 * Check whether unreclaimable slab amount is greater than
 * all user memory(LRU pages).
 * dump_unreclaimable_slab() could help in the case that
 * oom due to too much unreclaimable slab used by kernel.
*/
static bool should_dump_unreclaim_slab(void)
{}

/**
 * oom_badness - heuristic function to determine which candidate task to kill
 * @p: task struct of which task we should calculate
 * @totalpages: total present RAM allowed for page allocation
 *
 * The heuristic for determining which task to kill is made to be as simple and
 * predictable as possible.  The goal is to return the highest value for the
 * task consuming the most memory to avoid subsequent oom failures.
 */
long oom_badness(struct task_struct *p, unsigned long totalpages)
{}

static const char * const oom_constraint_text[] =;

/*
 * Determine the type of allocation constraint.
 */
static enum oom_constraint constrained_alloc(struct oom_control *oc)
{}

static int oom_evaluate_task(struct task_struct *task, void *arg)
{}

/*
 * Simple selection loop. We choose the process with the highest number of
 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 */
static void select_bad_process(struct oom_control *oc)
{}

static int dump_task(struct task_struct *p, void *arg)
{}

/**
 * dump_tasks - dump current memory state of all system tasks
 * @oc: pointer to struct oom_control
 *
 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 * are not shown.
 * State information includes task's pid, uid, tgid, vm size, rss,
 * pgtables_bytes, swapents, oom_score_adj value, and name.
 */
static void dump_tasks(struct oom_control *oc)
{}

static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
{}

static void dump_header(struct oom_control *oc)
{}

/*
 * Number of OOM victims in flight
 */
static atomic_t oom_victims =;
static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);

static bool oom_killer_disabled __read_mostly;

/*
 * task->mm can be NULL if the task is the exited group leader.  So to
 * determine whether the task is using a particular mm, we examine all the
 * task's threads: if one of those is using this mm then this task was also
 * using it.
 */
bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
{}

#ifdef CONFIG_MMU
/*
 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 * victim (if that is possible) to help the OOM killer to move on.
 */
static struct task_struct *oom_reaper_th;
static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
static struct task_struct *oom_reaper_list;
static DEFINE_SPINLOCK(oom_reaper_lock);

static bool __oom_reap_task_mm(struct mm_struct *mm)
{}

/*
 * Reaps the address space of the give task.
 *
 * Returns true on success and false if none or part of the address space
 * has been reclaimed and the caller should retry later.
 */
static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
{}

#define MAX_OOM_REAP_RETRIES
static void oom_reap_task(struct task_struct *tsk)
{}

static int oom_reaper(void *unused)
{}

static void wake_oom_reaper(struct timer_list *timer)
{}

/*
 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
 * The timers timeout is arbitrary... the longer it is, the longer the worst
 * case scenario for the OOM can take. If it is too small, the oom_reaper can
 * get in the way and release resources needed by the process exit path.
 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
 * before the exit path is able to wake the futex waiters.
 */
#define OOM_REAPER_DELAY
static void queue_oom_reaper(struct task_struct *tsk)
{}

#ifdef CONFIG_SYSCTL
static struct ctl_table vm_oom_kill_table[] =;
#endif

static int __init oom_init(void)
{}
subsys_initcall()
#else
static inline void queue_oom_reaper(struct task_struct *tsk)
{
}
#endif /* CONFIG_MMU */

/**
 * mark_oom_victim - mark the given task as OOM victim
 * @tsk: task to mark
 *
 * Has to be called with oom_lock held and never after
 * oom has been disabled already.
 *
 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 * under task_lock or operate on the current).
 */
static void mark_oom_victim(struct task_struct *tsk)
{}

/**
 * exit_oom_victim - note the exit of an OOM victim
 */
void exit_oom_victim(void)
{}

/**
 * oom_killer_enable - enable OOM killer
 */
void oom_killer_enable(void)
{}

/**
 * oom_killer_disable - disable OOM killer
 * @timeout: maximum timeout to wait for oom victims in jiffies
 *
 * Forces all page allocations to fail rather than trigger OOM killer.
 * Will block and wait until all OOM victims are killed or the given
 * timeout expires.
 *
 * The function cannot be called when there are runnable user tasks because
 * the userspace would see unexpected allocation failures as a result. Any
 * new usage of this function should be consulted with MM people.
 *
 * Returns true if successful and false if the OOM killer cannot be
 * disabled.
 */
bool oom_killer_disable(signed long timeout)
{}

static inline bool __task_will_free_mem(struct task_struct *task)
{}

/*
 * Checks whether the given task is dying or exiting and likely to
 * release its address space. This means that all threads and processes
 * sharing the same mm have to be killed or exiting.
 * Caller has to make sure that task->mm is stable (hold task_lock or
 * it operates on the current).
 */
static bool task_will_free_mem(struct task_struct *task)
{}

static void __oom_kill_process(struct task_struct *victim, const char *message)
{}

/*
 * Kill provided task unless it's secured by setting
 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 */
static int oom_kill_memcg_member(struct task_struct *task, void *message)
{}

static void oom_kill_process(struct oom_control *oc, const char *message)
{}

/*
 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 */
static void check_panic_on_oom(struct oom_control *oc)
{}

static BLOCKING_NOTIFIER_HEAD(oom_notify_list);

int register_oom_notifier(struct notifier_block *nb)
{}
EXPORT_SYMBOL_GPL();

int unregister_oom_notifier(struct notifier_block *nb)
{}
EXPORT_SYMBOL_GPL();

/**
 * out_of_memory - kill the "best" process when we run out of memory
 * @oc: pointer to struct oom_control
 *
 * If we run out of memory, we have the choice between either
 * killing a random task (bad), letting the system crash (worse)
 * OR try to be smart about which process to kill. Note that we
 * don't have to be perfect here, we just have to be good.
 */
bool out_of_memory(struct oom_control *oc)
{}

/*
 * The pagefault handler calls here because some allocation has failed. We have
 * to take care of the memcg OOM here because this is the only safe context without
 * any locks held but let the oom killer triggered from the allocation context care
 * about the global OOM.
 */
void pagefault_out_of_memory(void)
{}

SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
{}