linux/include/linux/fortify-string.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_FORTIFY_STRING_H_
#define _LINUX_FORTIFY_STRING_H_

#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/const.h>
#include <linux/limits.h>

#define __FORTIFY_INLINE
#define __RENAME(x)

#define FORTIFY_REASON_DIR(r)
#define FORTIFY_REASON_FUNC(r)
#define FORTIFY_REASON(func, write)

/* Overridden by KUnit tests. */
#ifndef fortify_panic
#define fortify_panic(func, write, avail, size, retfail)
#endif
#ifndef fortify_warn_once
#define fortify_warn_once(x...)
#endif

#define FORTIFY_READ
#define FORTIFY_WRITE

#define EACH_FORTIFY_FUNC(macro)

#define MAKE_FORTIFY_FUNC(func)

enum fortify_func {};

void __fortify_report(const u8 reason, const size_t avail, const size_t size);
void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn;
void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");

#define __compiletime_strlen(p)

#if defined(__SANITIZE_ADDRESS__)

#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
#elif defined(CONFIG_KASAN_GENERIC)
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__asan_memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memcpy);
#else /* CONFIG_KASAN_SW_TAGS */
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__hwasan_memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memcpy);
#endif

extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);

#else

#if defined(__SANITIZE_MEMORY__)
/*
 * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
 * corresponding __msan_XXX functions.
 */
#include <linux/kmsan_string.h>
#define __underlying_memcpy
#define __underlying_memmove
#define __underlying_memset
#else
#define __underlying_memcpy
#define __underlying_memmove
#define __underlying_memset
#endif

#define __underlying_memchr
#define __underlying_memcmp
#define __underlying_strcat
#define __underlying_strcpy
#define __underlying_strlen
#define __underlying_strncat
#define __underlying_strncpy

#endif

/**
 * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
 *
 * @dst: Destination memory address to write to
 * @src: Source memory address to read from
 * @bytes: How many bytes to write to @dst from @src
 * @justification: Free-form text or comment describing why the use is needed
 *
 * This should be used for corner cases where the compiler cannot do the
 * right thing, or during transitions between APIs, etc. It should be used
 * very rarely, and includes a place for justification detailing where bounds
 * checking has happened, and why existing solutions cannot be employed.
 */
#define unsafe_memcpy(dst, src, bytes, justification)

/*
 * Clang's use of __builtin_*object_size() within inlines needs hinting via
 * __pass_*object_size(). The preference is to only ever use type 1 (member
 * size, rather than struct size), but there remain some stragglers using
 * type 0 that will be converted in the future.
 */
#if __has_builtin(__builtin_dynamic_object_size)
#define POS
#define POS0
#else
#define POS
#define POS0
#endif

#define __compiletime_lessthan(bounds, length)

/**
 * strncpy - Copy a string to memory with non-guaranteed NUL padding
 *
 * @p: pointer to destination of copy
 * @q: pointer to NUL-terminated source string to copy
 * @size: bytes to write at @p
 *
 * If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
 * and @p will NOT be NUL-terminated
 *
 * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
 * will be written to @p until @size total bytes have been written.
 *
 * Do not use this function. While FORTIFY_SOURCE tries to avoid
 * over-reads of @q, it cannot defend against writing unterminated
 * results to @p. Using strncpy() remains ambiguous and fragile.
 * Instead, please choose an alternative, so that the expectation
 * of @p's contents is unambiguous:
 *
 * +--------------------+--------------------+------------+
 * | **p** needs to be: | padded to **size** | not padded |
 * +====================+====================+============+
 * |     NUL-terminated | strscpy_pad()      | strscpy()  |
 * +--------------------+--------------------+------------+
 * | not NUL-terminated | strtomem_pad()     | strtomem() |
 * +--------------------+--------------------+------------+
 *
 * Note strscpy*()'s differing return values for detecting truncation,
 * and strtomem*()'s expectation that the destination is marked with
 * __nonstring when it is a character array.
 *
 */
__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
{}

extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
/**
 * strnlen - Return bounded count of characters in a NUL-terminated string
 *
 * @p: pointer to NUL-terminated string to count.
 * @maxlen: maximum number of characters to count.
 *
 * Returns number of characters in @p (NOT including the final NUL), or
 * @maxlen, if no NUL has been found up to there.
 *
 */
__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
{}

/*
 * Defined after fortified strnlen to reuse it. However, it must still be
 * possible for strlen() to be used on compile-time strings for use in
 * static initializers (i.e. as a constant expression).
 */
/**
 * strlen - Return count of characters in a NUL-terminated string
 *
 * @p: pointer to NUL-terminated string to count.
 *
 * Do not use this function unless the string length is known at
 * compile-time. When @p is unterminated, this function may crash
 * or return unexpected counts that could lead to memory content
 * exposures. Prefer strnlen().
 *
 * Returns number of characters in @p (NOT including the final NUL).
 *
 */
#define strlen(p)
__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
__kernel_size_t __fortify_strlen(const char * const POS p)
{}

/* Defined after fortified strnlen() to reuse it. */
extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy);
__FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size)
{}

/* Defined after fortified strlen() to reuse it. */
extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat);
/**
 * strlcat - Append a string to an existing string
 *
 * @p: pointer to %NUL-terminated string to append to
 * @q: pointer to %NUL-terminated string to append from
 * @avail: Maximum bytes available in @p
 *
 * Appends %NUL-terminated string @q after the %NUL-terminated
 * string at @p, but will not write beyond @avail bytes total,
 * potentially truncating the copy from @q. @p will stay
 * %NUL-terminated only if a %NUL already existed within
 * the @avail bytes of @p. If so, the resulting number of
 * bytes copied from @q will be at most "@avail - strlen(@p) - 1".
 *
 * Do not use this function. While FORTIFY_SOURCE tries to avoid
 * read and write overflows, this is only possible when the sizes
 * of @p and @q are known to the compiler. Prefer building the
 * string with formatting, via scnprintf(), seq_buf, or similar.
 *
 * Returns total bytes that _would_ have been contained by @p
 * regardless of truncation, similar to snprintf(). If return
 * value is >= @avail, the string has been truncated.
 *
 */
__FORTIFY_INLINE
size_t strlcat(char * const POS p, const char * const POS q, size_t avail)
{}

/* Defined after fortified strlcat() to reuse it. */
/**
 * strcat - Append a string to an existing string
 *
 * @p: pointer to NUL-terminated string to append to
 * @q: pointer to NUL-terminated source string to append from
 *
 * Do not use this function. While FORTIFY_SOURCE tries to avoid
 * read and write overflows, this is only possible when the
 * destination buffer size is known to the compiler. Prefer
 * building the string with formatting, via scnprintf() or similar.
 * At the very least, use strncat().
 *
 * Returns @p.
 *
 */
__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
char *strcat(char * const POS p, const char *q)
{}

/**
 * strncat - Append a string to an existing string
 *
 * @p: pointer to NUL-terminated string to append to
 * @q: pointer to source string to append from
 * @count: Maximum bytes to read from @q
 *
 * Appends at most @count bytes from @q (stopping at the first
 * NUL byte) after the NUL-terminated string at @p. @p will be
 * NUL-terminated.
 *
 * Do not use this function. While FORTIFY_SOURCE tries to avoid
 * read and write overflows, this is only possible when the sizes
 * of @p and @q are known to the compiler. Prefer building the
 * string with formatting, via scnprintf() or similar.
 *
 * Returns @p.
 *
 */
/* Defined after fortified strlen() and strnlen() to reuse them. */
__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
{}

__FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size,
					 const size_t p_size,
					 const size_t p_size_field)
{}

#define __fortify_memset_chk(p, c, size, p_size, p_size_field)

/*
 * __struct_size() vs __member_size() must be captured here to avoid
 * evaluating argument side-effects further into the macro layers.
 */
#ifndef CONFIG_KMSAN
#define memset(p, c, s)
#endif

/*
 * To make sure the compiler can enforce protection against buffer overflows,
 * memcpy(), memmove(), and memset() must not be used beyond individual
 * struct members. If you need to copy across multiple members, please use
 * struct_group() to create a named mirror of an anonymous struct union.
 * (e.g. see struct sk_buff.) Read overflow checking is currently only
 * done when a write overflow is also present, or when building with W=1.
 *
 * Mitigation coverage matrix
 *					Bounds checking at:
 *					+-------+-------+-------+-------+
 *					| Compile time  |   Run time    |
 * memcpy() argument sizes:		| write | read  | write | read  |
 *        dest     source   length      +-------+-------+-------+-------+
 * memcpy(known,   known,   constant)	|   y   |   y   |  n/a  |  n/a  |
 * memcpy(known,   unknown, constant)	|   y   |   n   |  n/a  |   V   |
 * memcpy(known,   known,   dynamic)	|   n   |   n   |   B   |   B   |
 * memcpy(known,   unknown, dynamic)	|   n   |   n   |   B   |   V   |
 * memcpy(unknown, known,   constant)	|   n   |   y   |   V   |  n/a  |
 * memcpy(unknown, unknown, constant)	|   n   |   n   |   V   |   V   |
 * memcpy(unknown, known,   dynamic)	|   n   |   n   |   V   |   B   |
 * memcpy(unknown, unknown, dynamic)	|   n   |   n   |   V   |   V   |
 *					+-------+-------+-------+-------+
 *
 * y = perform deterministic compile-time bounds checking
 * n = cannot perform deterministic compile-time bounds checking
 * n/a = no run-time bounds checking needed since compile-time deterministic
 * B = can perform run-time bounds checking (currently unimplemented)
 * V = vulnerable to run-time overflow (will need refactoring to solve)
 *
 */
__FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
					 const size_t p_size,
					 const size_t q_size,
					 const size_t p_size_field,
					 const size_t q_size_field,
					 const u8 func)
{}

#define __fortify_memcpy_chk(p, q, size, p_size, q_size,		\
			     p_size_field, q_size_field, op)

/*
 * Notes about compile-time buffer size detection:
 *
 * With these types...
 *
 *	struct middle {
 *		u16 a;
 *		u8 middle_buf[16];
 *		int b;
 *	};
 *	struct end {
 *		u16 a;
 *		u8 end_buf[16];
 *	};
 *	struct flex {
 *		int a;
 *		u8 flex_buf[];
 *	};
 *
 *	void func(TYPE *ptr) { ... }
 *
 * Cases where destination size cannot be currently detected:
 * - the size of ptr's object (seemingly by design, gcc & clang fail):
 *	__builtin_object_size(ptr, 1) == SIZE_MAX
 * - the size of flexible arrays in ptr's obj (by design, dynamic size):
 *	__builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
 * - the size of ANY array at the end of ptr's obj (gcc and clang bug):
 *	__builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
 *	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
 *
 * Cases where destination size is currently detected:
 * - the size of non-array members within ptr's object:
 *	__builtin_object_size(ptr->a, 1) == 2
 * - the size of non-flexible-array in the middle of ptr's obj:
 *	__builtin_object_size(ptr->middle_buf, 1) == 16
 *
 */

/*
 * __struct_size() vs __member_size() must be captured here to avoid
 * evaluating argument side-effects further into the macro layers.
 */
#define memcpy(p, q, s)
#define memmove(p, q, s)

extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
{}

__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
{}

__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
{}

void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
{}

extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup_noprof)
								    __realloc_size(2);
__FORTIFY_INLINE void *kmemdup_noprof(const void * const POS0 p, size_t size, gfp_t gfp)
{}
#define kmemdup(...)

/**
 * strcpy - Copy a string into another string buffer
 *
 * @p: pointer to destination of copy
 * @q: pointer to NUL-terminated source string to copy
 *
 * Do not use this function. While FORTIFY_SOURCE tries to avoid
 * overflows, this is only possible when the sizes of @q and @p are
 * known to the compiler. Prefer strscpy(), though note its different
 * return values for detecting truncation.
 *
 * Returns @p.
 *
 */
/* Defined after fortified strlen to reuse it. */
__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
char *strcpy(char * const POS p, const char * const POS q)
{}

/* Don't use these outside the FORITFY_SOURCE implementation */
#undef __underlying_memchr
#undef __underlying_memcmp
#undef __underlying_strcat
#undef __underlying_strcpy
#undef __underlying_strlen
#undef __underlying_strncat
#undef __underlying_strncpy

#undef POS
#undef POS0

#endif /* _LINUX_FORTIFY_STRING_H_ */