/* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/svcauth.h * * RPC server-side authentication stuff. * * Copyright (C) 1995, 1996 Olaf Kirch <[email protected]> */ #ifndef _LINUX_SUNRPC_SVCAUTH_H_ #define _LINUX_SUNRPC_SVCAUTH_H_ #include <linux/string.h> #include <linux/sunrpc/msg_prot.h> #include <linux/sunrpc/cache.h> #include <linux/sunrpc/gss_api.h> #include <linux/hash.h> #include <linux/stringhash.h> #include <linux/cred.h> struct svc_cred { … }; static inline void init_svc_cred(struct svc_cred *cred) { … } static inline void free_svc_cred(struct svc_cred *cred) { … } struct svc_rqst; /* forward decl */ struct in6_addr; /* Authentication is done in the context of a domain. * * Currently, the nfs server uses the auth_domain to stand * for the "client" listed in /etc/exports. * * More generally, a domain might represent a group of clients using * a common mechanism for authentication and having a common mapping * between local identity (uid) and network identity. All clients * in a domain have similar general access rights. Each domain can * contain multiple principals which will have different specific right * based on normal Discretionary Access Control. * * A domain is created by an authentication flavour module based on name * only. Userspace then fills in detail on demand. * * In the case of auth_unix and auth_null, the auth_domain is also * associated with entries in another cache representing the mapping * of ip addresses to the given client. */ struct auth_domain { … }; enum svc_auth_status { … }; /* * Each authentication flavour registers an auth_ops * structure. * name is simply the name. * flavour gives the auth flavour. It determines where the flavour is registered * accept() is given a request and should verify it. * It should inspect the authenticator and verifier, and possibly the data. * If there is a problem with the authentication *authp should be set. * The return value of accept() can indicate: * OK - authorised. client and credential are set in rqstp. * reqbuf points to arguments * resbuf points to good place for results. verfier * is (probably) already in place. Certainly space is * reserved for it. * DROP - simply drop the request. It may have been deferred * CLOSE - like SVC_DROP, but request is definitely lost. * If there is a tcp connection, it should be closed. * GARBAGE - rpc garbage_args error * SYSERR - rpc system_err error * DENIED - authp holds reason for denial. * COMPLETE - the reply is encoded already and ready to be sent; no * further processing is necessary. (This is used for processing * null procedure calls which are used to set up encryption * contexts.) * * accept is passed the proc number so that it can accept NULL rpc requests * even if it cannot authenticate the client (as is sometimes appropriate). * * release() is given a request after the procedure has been run. * It should sign/encrypt the results if needed * * domain_release() * This call releases a domain. * * set_client() * Given a pending request (struct svc_rqst), finds and assigns * an appropriate 'auth_domain' as the client. * * pseudoflavor() * Returns RPC_AUTH pseudoflavor in use by @rqstp. */ struct auth_ops { … }; struct svc_xprt; extern enum svc_auth_status svc_authenticate(struct svc_rqst *rqstp); extern rpc_authflavor_t svc_auth_flavor(struct svc_rqst *rqstp); extern int svc_authorise(struct svc_rqst *rqstp); extern enum svc_auth_status svc_set_client(struct svc_rqst *rqstp); extern int svc_auth_register(rpc_authflavor_t flavor, struct auth_ops *aops); extern void svc_auth_unregister(rpc_authflavor_t flavor); extern struct auth_domain *unix_domain_find(char *name); extern void auth_domain_put(struct auth_domain *item); extern struct auth_domain *auth_domain_lookup(char *name, struct auth_domain *new); extern struct auth_domain *auth_domain_find(char *name); extern void svcauth_unix_purge(struct net *net); extern void svcauth_unix_info_release(struct svc_xprt *xpt); extern enum svc_auth_status svcauth_unix_set_client(struct svc_rqst *rqstp); extern int unix_gid_cache_create(struct net *net); extern void unix_gid_cache_destroy(struct net *net); /* * The <stringhash.h> functions are good enough that we don't need to * use hash_32() on them; just extracting the high bits is enough. */ static inline unsigned long hash_str(char const *name, int bits) { … } static inline unsigned long hash_mem(char const *buf, int length, int bits) { … } #endif /* _LINUX_SUNRPC_SVCAUTH_H_ */