linux/fs/nfs/nfs42xattr.c

// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
 *
 * User extended attribute client side cache functions.
 *
 * Author: Frank van der Linden <[email protected]>
 */
#include <linux/errno.h>
#include <linux/nfs_fs.h>
#include <linux/hashtable.h>
#include <linux/refcount.h>
#include <uapi/linux/xattr.h>

#include "nfs4_fs.h"
#include "internal.h"

/*
 * User extended attributes client side caching is implemented by having
 * a cache structure attached to NFS inodes. This structure is allocated
 * when needed, and freed when the cache is zapped.
 *
 * The cache structure contains as hash table of entries, and a pointer
 * to a special-cased entry for the listxattr cache.
 *
 * Accessing and allocating / freeing the caches is done via reference
 * counting. The cache entries use a similar refcounting scheme.
 *
 * This makes freeing a cache, both from the shrinker and from the
 * zap cache path, easy. It also means that, in current use cases,
 * the large majority of inodes will not waste any memory, as they
 * will never have any user extended attributes assigned to them.
 *
 * Attribute entries are hashed in to a simple hash table. They are
 * also part of an LRU.
 *
 * There are three shrinkers.
 *
 * Two shrinkers deal with the cache entries themselves: one for
 * large entries (> PAGE_SIZE), and one for smaller entries. The
 * shrinker for the larger entries works more aggressively than
 * those for the smaller entries.
 *
 * The other shrinker frees the cache structures themselves.
 */

/*
 * 64 buckets is a good default. There is likely no reasonable
 * workload that uses more than even 64 user extended attributes.
 * You can certainly add a lot more - but you get what you ask for
 * in those circumstances.
 */
#define NFS4_XATTR_HASH_SIZE

#define NFSDBG_FACILITY

struct nfs4_xattr_cache;
struct nfs4_xattr_entry;

struct nfs4_xattr_bucket {};

struct nfs4_xattr_cache {};

struct nfs4_xattr_entry {};

#define NFS4_XATTR_ENTRY_EXTVAL

/*
 * LRU list of NFS inodes that have xattr caches.
 */
static struct list_lru nfs4_xattr_cache_lru;
static struct list_lru nfs4_xattr_entry_lru;
static struct list_lru nfs4_xattr_large_entry_lru;

static struct kmem_cache *nfs4_xattr_cache_cachep;

/*
 * Hashing helper functions.
 */
static void
nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
{}

/*
 * Locking order:
 * 1. inode i_lock or bucket lock
 * 2. list_lru lock (taken by list_lru_* functions)
 */

/*
 * Wrapper functions to add a cache entry to the right LRU.
 */
static bool
nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
{}

static bool
nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
{}

/*
 * This function allocates cache entries. They are the normal
 * extended attribute name/value pairs, but may also be a listxattr
 * cache. Those allocations use the same entry so that they can be
 * treated as one by the memory shrinker.
 *
 * xattr cache entries are allocated together with names. If the
 * value fits in to one page with the entry structure and the name,
 * it will also be part of the same allocation (kmalloc). This is
 * expected to be the vast majority of cases. Larger allocations
 * have a value pointer that is allocated separately by kvmalloc.
 *
 * Parameters:
 *
 * @name:  Name of the extended attribute. NULL for listxattr cache
 *         entry.
 * @value: Value of attribute, or listxattr cache. NULL if the
 *         value is to be copied from pages instead.
 * @pages: Pages to copy the value from, if not NULL. Passed in to
 *	   make it easier to copy the value after an RPC, even if
 *	   the value will not be passed up to application (e.g.
 *	   for a 'query' getxattr with NULL buffer).
 * @len:   Length of the value. Can be 0 for zero-length attributes.
 *         @value and @pages will be NULL if @len is 0.
 */
static struct nfs4_xattr_entry *
nfs4_xattr_alloc_entry(const char *name, const void *value,
		       struct page **pages, size_t len)
{}

static void
nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
{}

static void
nfs4_xattr_free_entry_cb(struct kref *kref)
{}

static void
nfs4_xattr_free_cache_cb(struct kref *kref)
{}

static struct nfs4_xattr_cache *
nfs4_xattr_alloc_cache(void)
{}

/*
 * Set the listxattr cache, which is a special-cased cache entry.
 * The special value ERR_PTR(-ESTALE) is used to indicate that
 * the cache is being drained - this prevents a new listxattr
 * cache from being added to what is now a stale cache.
 */
static int
nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
			 struct nfs4_xattr_entry *new)
{}

/*
 * Unlink a cache from its parent inode, clearing out an invalid
 * cache. Must be called with i_lock held.
 */
static struct nfs4_xattr_cache *
nfs4_xattr_cache_unlink(struct inode *inode)
{}

/*
 * Discard a cache. Called by get_cache() if there was an old,
 * invalid cache. Can also be called from a shrinker callback.
 *
 * The cache is dead, it has already been unlinked from its inode,
 * and no longer appears on the cache LRU list.
 *
 * Mark all buckets as draining, so that no new entries are added. This
 * could still happen in the unlikely, but possible case that another
 * thread had grabbed a reference before it was unlinked from the inode,
 * and is still holding it for an add operation.
 *
 * Remove all entries from the LRU lists, so that there is no longer
 * any way to 'find' this cache. Then, remove the entries from the hash
 * table.
 *
 * At that point, the cache will remain empty and can be freed when the final
 * reference drops, which is very likely the kref_put at the end of
 * this function, or the one called immediately afterwards in the
 * shrinker callback.
 */
static void
nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
{}

/*
 * Get a referenced copy of the cache structure. Avoid doing allocs
 * while holding i_lock. Which means that we do some optimistic allocation,
 * and might have to free the result in rare cases.
 *
 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
 * and acts accordingly, replacing the cache when needed. For the read case
 * (!add), this means that the caller must make sure that the cache
 * is valid before caling this function. getxattr and listxattr call
 * revalidate_inode to do this. The attribute cache timeout (for the
 * non-delegated case) is expected to be dealt with in the revalidate
 * call.
 */

static struct nfs4_xattr_cache *
nfs4_xattr_get_cache(struct inode *inode, int add)
{}

static inline struct nfs4_xattr_bucket *
nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
{}

static struct nfs4_xattr_entry *
nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
{}

static int
nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
		    struct nfs4_xattr_entry *entry)
{}

static void
nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
{}

static struct nfs4_xattr_entry *
nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
{}

/*
 * Entry point to retrieve an entry from the cache.
 */
ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
			 ssize_t buflen)
{}

/*
 * Retrieve a cached list of xattrs from the cache.
 */
ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
{}

/*
 * Add an xattr to the cache.
 *
 * This also invalidates the xattr list cache.
 */
void nfs4_xattr_cache_add(struct inode *inode, const char *name,
			  const char *buf, struct page **pages, ssize_t buflen)
{}


/*
 * Remove an xattr from the cache.
 *
 * This also invalidates the xattr list cache.
 */
void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
{}

/*
 * Cache listxattr output, replacing any possible old one.
 */
void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
			       ssize_t buflen)
{}

/*
 * Zap the entire cache. Called when an inode is evicted.
 */
void nfs4_xattr_cache_zap(struct inode *inode)
{}

/*
 * The entry LRU is shrunk more aggressively than the cache LRU,
 * by settings @seeks to 1.
 *
 * Cache structures are freed only when they've become empty, after
 * pruning all but one entry.
 */

static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
					    struct shrink_control *sc);
static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
					    struct shrink_control *sc);
static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
					   struct shrink_control *sc);
static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
					   struct shrink_control *sc);

static struct shrinker *nfs4_xattr_cache_shrinker;
static struct shrinker *nfs4_xattr_entry_shrinker;
static struct shrinker *nfs4_xattr_large_entry_shrinker;

static enum lru_status
cache_lru_isolate(struct list_head *item,
	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{}

static unsigned long
nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
{}


static unsigned long
nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
{}

static enum lru_status
entry_lru_isolate(struct list_head *item,
	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{}

static unsigned long
nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
{}

static unsigned long
nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
{}


static void nfs4_xattr_cache_init_once(void *p)
{}

count_objects_cb;
scan_objects_cb;

static int __init nfs4_xattr_shrinker_init(struct shrinker **shrinker,
					   struct list_lru *lru, const char *name,
					   count_objects_cb count,
					   scan_objects_cb scan, long batch, int seeks)
{}

static void nfs4_xattr_shrinker_destroy(struct shrinker *shrinker,
					struct list_lru *lru)
{}

int __init nfs4_xattr_cache_init(void)
{}

void nfs4_xattr_cache_exit(void)
{}