linux/fs/ntfs3/lib/decompress_common.c

// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * decompress_common.c - Code shared by the XPRESS and LZX decompressors
 *
 * Copyright (C) 2015 Eric Biggers
 */

#include "decompress_common.h"

/*
 * make_huffman_decode_table() -
 *
 * Build a decoding table for a canonical prefix code, or "Huffman code".
 *
 * This is an internal function, not part of the library API!
 *
 * This takes as input the length of the codeword for each symbol in the
 * alphabet and produces as output a table that can be used for fast
 * decoding of prefix-encoded symbols using read_huffsym().
 *
 * Strictly speaking, a canonical prefix code might not be a Huffman
 * code.  But this algorithm will work either way; and in fact, since
 * Huffman codes are defined in terms of symbol frequencies, there is no
 * way for the decompressor to know whether the code is a true Huffman
 * code or not until all symbols have been decoded.
 *
 * Because the prefix code is assumed to be "canonical", it can be
 * reconstructed directly from the codeword lengths.  A prefix code is
 * canonical if and only if a longer codeword never lexicographically
 * precedes a shorter codeword, and the lexicographic ordering of
 * codewords of the same length is the same as the lexicographic ordering
 * of the corresponding symbols.  Consequently, we can sort the symbols
 * primarily by codeword length and secondarily by symbol value, then
 * reconstruct the prefix code by generating codewords lexicographically
 * in that order.
 *
 * This function does not, however, generate the prefix code explicitly.
 * Instead, it directly builds a table for decoding symbols using the
 * code.  The basic idea is this: given the next 'max_codeword_len' bits
 * in the input, we can look up the decoded symbol by indexing a table
 * containing 2**max_codeword_len entries.  A codeword with length
 * 'max_codeword_len' will have exactly one entry in this table, whereas
 * a codeword shorter than 'max_codeword_len' will have multiple entries
 * in this table.  Precisely, a codeword of length n will be represented
 * by 2**(max_codeword_len - n) entries in this table.  The 0-based index
 * of each such entry will contain the corresponding codeword as a prefix
 * when zero-padded on the left to 'max_codeword_len' binary digits.
 *
 * That's the basic idea, but we implement two optimizations regarding
 * the format of the decode table itself:
 *
 * - For many compression formats, the maximum codeword length is too
 *   long for it to be efficient to build the full decoding table
 *   whenever a new prefix code is used.  Instead, we can build the table
 *   using only 2**table_bits entries, where 'table_bits' is some number
 *   less than or equal to 'max_codeword_len'.  Then, only codewords of
 *   length 'table_bits' and shorter can be directly looked up.  For
 *   longer codewords, the direct lookup instead produces the root of a
 *   binary tree.  Using this tree, the decoder can do traditional
 *   bit-by-bit decoding of the remainder of the codeword.  Child nodes
 *   are allocated in extra entries at the end of the table; leaf nodes
 *   contain symbols.  Note that the long-codeword case is, in general,
 *   not performance critical, since in Huffman codes the most frequently
 *   used symbols are assigned the shortest codeword lengths.
 *
 * - When we decode a symbol using a direct lookup of the table, we still
 *   need to know its length so that the bitstream can be advanced by the
 *   appropriate number of bits.  The simple solution is to simply retain
 *   the 'lens' array and use the decoded symbol as an index into it.
 *   However, this requires two separate array accesses in the fast path.
 *   The optimization is to store the length directly in the decode
 *   table.  We use the bottom 11 bits for the symbol and the top 5 bits
 *   for the length.  In addition, to combine this optimization with the
 *   previous one, we introduce a special case where the top 2 bits of
 *   the length are both set if the entry is actually the root of a
 *   binary tree.
 *
 * @decode_table:
 *	The array in which to create the decoding table.  This must have
 *	a length of at least ((2**table_bits) + 2 * num_syms) entries.
 *
 * @num_syms:
 *	The number of symbols in the alphabet; also, the length of the
 *	'lens' array.  Must be less than or equal to 2048.
 *
 * @table_bits:
 *	The order of the decode table size, as explained above.  Must be
 *	less than or equal to 13.
 *
 * @lens:
 *	An array of length @num_syms, indexable by symbol, that gives the
 *	length of the codeword, in bits, for that symbol.  The length can
 *	be 0, which means that the symbol does not have a codeword
 *	assigned.
 *
 * @max_codeword_len:
 *	The longest codeword length allowed in the compression format.
 *	All entries in 'lens' must be less than or equal to this value.
 *	This must be less than or equal to 23.
 *
 * @working_space
 *	A temporary array of length '2 * (max_codeword_len + 1) +
 *	num_syms'.
 *
 * Returns 0 on success, or -1 if the lengths do not form a valid prefix
 * code.
 */
int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
			      const u32 table_bits, const u8 lens[],
			      const u32 max_codeword_len,
			      u16 working_space[])
{}