linux/include/linux/mtd/rawnand.h

/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  Copyright © 2000-2010 David Woodhouse <[email protected]>
 *                        Steven J. Hill <[email protected]>
 *		          Thomas Gleixner <[email protected]>
 *
 * Info:
 *	Contains standard defines and IDs for NAND flash devices
 *
 * Changelog:
 *	See git changelog.
 */
#ifndef __LINUX_MTD_RAWNAND_H
#define __LINUX_MTD_RAWNAND_H

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/bbm.h>
#include <linux/mtd/jedec.h>
#include <linux/mtd/onfi.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/types.h>

struct nand_chip;
struct gpio_desc;

/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS

/*
 * Constants for hardware specific CLE/ALE/NCE function
 *
 * These are bits which can be or'ed to set/clear multiple
 * bits in one go.
 */
/* Select the chip by setting nCE to low */
#define NAND_NCE
/* Select the command latch by setting CLE to high */
#define NAND_CLE
/* Select the address latch by setting ALE to high */
#define NAND_ALE

#define NAND_CTRL_CLE
#define NAND_CTRL_ALE
#define NAND_CTRL_CHANGE

/*
 * Standard NAND flash commands
 */
#define NAND_CMD_READ0
#define NAND_CMD_READ1
#define NAND_CMD_RNDOUT
#define NAND_CMD_PAGEPROG
#define NAND_CMD_READOOB
#define NAND_CMD_ERASE1
#define NAND_CMD_STATUS
#define NAND_CMD_SEQIN
#define NAND_CMD_RNDIN
#define NAND_CMD_READID
#define NAND_CMD_ERASE2
#define NAND_CMD_PARAM
#define NAND_CMD_GET_FEATURES
#define NAND_CMD_SET_FEATURES
#define NAND_CMD_RESET

/* Extended commands for large page devices */
#define NAND_CMD_READSTART
#define NAND_CMD_READCACHESEQ
#define NAND_CMD_READCACHEEND
#define NAND_CMD_RNDOUTSTART
#define NAND_CMD_CACHEDPROG

#define NAND_CMD_NONE

/* Status bits */
#define NAND_STATUS_FAIL
#define NAND_STATUS_FAIL_N1
#define NAND_STATUS_TRUE_READY
#define NAND_STATUS_READY
#define NAND_STATUS_WP

#define NAND_DATA_IFACE_CHECK_ONLY

/*
 * Constants for Hardware ECC
 */
/* Reset Hardware ECC for read */
#define NAND_ECC_READ
/* Reset Hardware ECC for write */
#define NAND_ECC_WRITE
/* Enable Hardware ECC before syndrome is read back from flash */
#define NAND_ECC_READSYN

/*
 * Enable generic NAND 'page erased' check. This check is only done when
 * ecc.correct() returns -EBADMSG.
 * Set this flag if your implementation does not fix bitflips in erased
 * pages and you want to rely on the default implementation.
 */
#define NAND_ECC_GENERIC_ERASED_CHECK

/*
 * Option constants for bizarre disfunctionality and real
 * features.
 */

/* Buswidth is 16 bit */
#define NAND_BUSWIDTH_16

/*
 * When using software implementation of Hamming, we can specify which byte
 * ordering should be used.
 */
#define NAND_ECC_SOFT_HAMMING_SM_ORDER

/* Chip has cache program function */
#define NAND_CACHEPRG
/* Options valid for Samsung large page devices */
#define NAND_SAMSUNG_LP_OPTIONS

/*
 * Chip requires ready check on read (for auto-incremented sequential read).
 * True only for small page devices; large page devices do not support
 * autoincrement.
 */
#define NAND_NEED_READRDY

/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE

/* Device is one of 'new' xD cards that expose fake nand command set */
#define NAND_BROKEN_XD

/* Device behaves just like nand, but is readonly */
#define NAND_ROM

/* Device supports subpage reads */
#define NAND_SUBPAGE_READ
/* Macros to identify the above */
#define NAND_HAS_SUBPAGE_READ(chip)

/*
 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 * patterns.
 */
#define NAND_NEED_SCRAMBLING

/* Device needs 3rd row address cycle */
#define NAND_ROW_ADDR_3

/* Non chip related options */
/* This option skips the bbt scan during initialization. */
#define NAND_SKIP_BBTSCAN
/* Chip may not exist, so silence any errors in scan */
#define NAND_SCAN_SILENT_NODEV

/*
 * Autodetect nand buswidth with readid/onfi.
 * This suppose the driver will configure the hardware in 8 bits mode
 * when calling nand_scan_ident, and update its configuration
 * before calling nand_scan_tail.
 */
#define NAND_BUSWIDTH_AUTO

/*
 * This option could be defined by controller drivers to protect against
 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 */
#define NAND_USES_DMA

/*
 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
 * on the default ->cmdfunc() implementation, you may want to let the core
 * handle the tCCS delay which is required when a column change (RNDIN or
 * RNDOUT) is requested.
 * If your controller already takes care of this delay, you don't need to set
 * this flag.
 */
#define NAND_WAIT_TCCS

/*
 * Whether the NAND chip is a boot medium. Drivers might use this information
 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 */
#define NAND_IS_BOOT_MEDIUM

/*
 * Do not try to tweak the timings at runtime. This is needed when the
 * controller initializes the timings on itself or when it relies on
 * configuration done by the bootloader.
 */
#define NAND_KEEP_TIMINGS

/*
 * There are different places where the manufacturer stores the factory bad
 * block markers.
 *
 * Position within the block: Each of these pages needs to be checked for a
 * bad block marking pattern.
 */
#define NAND_BBM_FIRSTPAGE
#define NAND_BBM_SECONDPAGE
#define NAND_BBM_LASTPAGE

/*
 * Some controllers with pipelined ECC engines override the BBM marker with
 * data or ECC bytes, thus making bad block detection through bad block marker
 * impossible. Let's flag those chips so the core knows it shouldn't check the
 * BBM and consider all blocks good.
 */
#define NAND_NO_BBM_QUIRK

/* Cell info constants */
#define NAND_CI_CHIPNR_MSK
#define NAND_CI_CELLTYPE_MSK
#define NAND_CI_CELLTYPE_SHIFT

/* Position within the OOB data of the page */
#define NAND_BBM_POS_SMALL
#define NAND_BBM_POS_LARGE

/**
 * struct nand_parameters - NAND generic parameters from the parameter page
 * @model: Model name
 * @supports_set_get_features: The NAND chip supports setting/getting features
 * @supports_read_cache: The NAND chip supports read cache operations
 * @set_feature_list: Bitmap of features that can be set
 * @get_feature_list: Bitmap of features that can be get
 * @onfi: ONFI specific parameters
 */
struct nand_parameters {};

/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN

/**
 * struct nand_id - NAND id structure
 * @data: buffer containing the id bytes.
 * @len: ID length.
 */
struct nand_id {};

/**
 * struct nand_ecc_step_info - ECC step information of ECC engine
 * @stepsize: data bytes per ECC step
 * @strengths: array of supported strengths
 * @nstrengths: number of supported strengths
 */
struct nand_ecc_step_info {};

/**
 * struct nand_ecc_caps - capability of ECC engine
 * @stepinfos: array of ECC step information
 * @nstepinfos: number of ECC step information
 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 */
struct nand_ecc_caps {};

/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)

/**
 * struct nand_ecc_ctrl - Control structure for ECC
 * @engine_type: ECC engine type
 * @placement:	OOB bytes placement
 * @algo:	ECC algorithm
 * @steps:	number of ECC steps per page
 * @size:	data bytes per ECC step
 * @bytes:	ECC bytes per step
 * @strength:	max number of correctible bits per ECC step
 * @total:	total number of ECC bytes per page
 * @prepad:	padding information for syndrome based ECC generators
 * @postpad:	padding information for syndrome based ECC generators
 * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
 * @calc_buf:	buffer for calculated ECC, size is oobsize.
 * @code_buf:	buffer for ECC read from flash, size is oobsize.
 * @hwctl:	function to control hardware ECC generator. Must only
 *		be provided if an hardware ECC is available
 * @calculate:	function for ECC calculation or readback from ECC hardware
 * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
 *		Should return a positive number representing the number of
 *		corrected bitflips, -EBADMSG if the number of bitflips exceed
 *		ECC strength, or any other error code if the error is not
 *		directly related to correction.
 *		If -EBADMSG is returned the input buffers should be left
 *		untouched.
 * @read_page_raw:	function to read a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and always return contiguous in-band and
 *			out-of-band data even if they're not stored
 *			contiguously on the NAND chip (e.g.
 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 *			out-of-band data).
 * @write_page_raw:	function to write a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and consider the passed data as contiguous
 *			in-band and out-of-band data. ECC controller is
 *			responsible for doing the appropriate transformations
 *			to adapt to its specific layout (e.g.
 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 *			out-of-band data).
 * @read_page:	function to read a page according to the ECC generator
 *		requirements; returns maximum number of bitflips corrected in
 *		any single ECC step, -EIO hw error
 * @read_subpage:	function to read parts of the page covered by ECC;
 *			returns same as read_page()
 * @write_subpage:	function to write parts of the page covered by ECC.
 * @write_page:	function to write a page according to the ECC generator
 *		requirements.
 * @write_oob_raw:	function to write chip OOB data without ECC
 * @read_oob_raw:	function to read chip OOB data without ECC
 * @read_oob:	function to read chip OOB data
 * @write_oob:	function to write chip OOB data
 */
struct nand_ecc_ctrl {};

/**
 * struct nand_sdr_timings - SDR NAND chip timings
 *
 * This struct defines the timing requirements of a SDR NAND chip.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
 * (chapter 4.15 Timing Parameters)
 *
 * All these timings are expressed in picoseconds.
 *
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
 * @tALH_min: ALE hold time
 * @tADL_min: ALE to data loading time
 * @tALS_min: ALE setup time
 * @tAR_min: ALE to RE# delay
 * @tCEA_max: CE# access time
 * @tCEH_min: CE# high hold time
 * @tCH_min:  CE# hold time
 * @tCHZ_max: CE# high to output hi-Z
 * @tCLH_min: CLE hold time
 * @tCLR_min: CLE to RE# delay
 * @tCLS_min: CLE setup time
 * @tCOH_min: CE# high to output hold
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDS_min: Data setup time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tIR_min: Output hi-Z to RE# low
 * @tITC_max: Interface and Timing Mode Change time
 * @tRC_min: RE# cycle time
 * @tREA_max: RE# access time
 * @tREH_min: RE# high hold time
 * @tRHOH_min: RE# high to output hold
 * @tRHW_min: RE# high to WE# low
 * @tRHZ_max: RE# high to output hi-Z
 * @tRLOH_min: RE# low to output hold
 * @tRP_min: RE# pulse width
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWC_min: WE# cycle time
 * @tWH_min: WE# high hold time
 * @tWHR_min: WE# high to RE# low
 * @tWP_min: WE# pulse width
 * @tWW_min: WP# transition to WE# low
 */
struct nand_sdr_timings {};

/**
 * struct nand_nvddr_timings - NV-DDR NAND chip timings
 *
 * This struct defines the timing requirements of a NV-DDR NAND data interface.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
 * (chapter 4.18.2 NV-DDR)
 *
 * All these timings are expressed in picoseconds.
 *
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
 * @tAC_min: Access window of DQ[7:0] from CLK
 * @tAC_max: Access window of DQ[7:0] from CLK
 * @tADL_min: ALE to data loading time
 * @tCAD_min: Command, Address, Data delay
 * @tCAH_min: Command/Address DQ hold time
 * @tCALH_min: W/R_n, CLE and ALE hold time
 * @tCALS_min: W/R_n, CLE and ALE setup time
 * @tCAS_min: Command/address DQ setup time
 * @tCEH_min: CE# high hold time
 * @tCH_min:  CE# hold time
 * @tCK_min: Average clock cycle time
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDQSCK_min: Start of the access window of DQS from CLK
 * @tDQSCK_max: End of the access window of DQS from CLK
 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
 * @tDS_min: Data setup time
 * @tDSC_min: DQS cycle time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tITC_max: Interface and Timing Mode Change time
 * @tQHS_max: Data hold skew factor
 * @tRHW_min: Data output cycle to command, address, or data input cycle
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWHR_min: WE# high to RE# low
 * @tWRCK_min: W/R_n low to data output cycle
 * @tWW_min: WP# transition to WE# low
 */
struct nand_nvddr_timings {};

/*
 * While timings related to the data interface itself are mostly different
 * between SDR and NV-DDR, timings related to the internal chip behavior are
 * common. IOW, the following entries which describe the internal delays have
 * the same definition and are shared in both SDR and NV-DDR timing structures:
 * - tADL_min
 * - tBERS_max
 * - tCCS_min
 * - tFEAT_max
 * - tPROG_max
 * - tR_max
 * - tRR_min
 * - tRST_max
 * - tWB_max
 *
 * The below macros return the value of a given timing, no matter the interface.
 */
#define NAND_COMMON_TIMING_PS(conf, timing_name)

#define NAND_COMMON_TIMING_MS(conf, timing_name)

#define NAND_COMMON_TIMING_NS(conf, timing_name)

/**
 * enum nand_interface_type - NAND interface type
 * @NAND_SDR_IFACE:	Single Data Rate interface
 * @NAND_NVDDR_IFACE:	Double Data Rate interface
 */
enum nand_interface_type {};

/**
 * struct nand_interface_config - NAND interface timing
 * @type:	 type of the timing
 * @timings:	 The timing information
 * @timings.mode: Timing mode as defined in the specification
 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
 */
struct nand_interface_config {};

/**
 * nand_interface_is_sdr - get the interface type
 * @conf:	The data interface
 */
static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
{}

/**
 * nand_interface_is_nvddr - get the interface type
 * @conf:	The data interface
 */
static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
{}

/**
 * nand_get_sdr_timings - get SDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_interface_config *conf)
{}

/**
 * nand_get_nvddr_timings - get NV-DDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_nvddr_timings *
nand_get_nvddr_timings(const struct nand_interface_config *conf)
{}

/**
 * struct nand_op_cmd_instr - Definition of a command instruction
 * @opcode: the command to issue in one cycle
 */
struct nand_op_cmd_instr {};

/**
 * struct nand_op_addr_instr - Definition of an address instruction
 * @naddrs: length of the @addrs array
 * @addrs: array containing the address cycles to issue
 */
struct nand_op_addr_instr {};

/**
 * struct nand_op_data_instr - Definition of a data instruction
 * @len: number of data bytes to move
 * @buf: buffer to fill
 * @buf.in: buffer to fill when reading from the NAND chip
 * @buf.out: buffer to read from when writing to the NAND chip
 * @force_8bit: force 8-bit access
 *
 * Please note that "in" and "out" are inverted from the ONFI specification
 * and are from the controller perspective, so a "in" is a read from the NAND
 * chip while a "out" is a write to the NAND chip.
 */
struct nand_op_data_instr {};

/**
 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 */
struct nand_op_waitrdy_instr {};

/**
 * enum nand_op_instr_type - Definition of all instruction types
 * @NAND_OP_CMD_INSTR: command instruction
 * @NAND_OP_ADDR_INSTR: address instruction
 * @NAND_OP_DATA_IN_INSTR: data in instruction
 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 */
enum nand_op_instr_type {};

/**
 * struct nand_op_instr - Instruction object
 * @type: the instruction type
 * @ctx:  extra data associated to the instruction. You'll have to use the
 *        appropriate element depending on @type
 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 *	      or %NAND_OP_DATA_OUT_INSTR
 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
 * @delay_ns: delay the controller should apply after the instruction has been
 *	      issued on the bus. Most modern controllers have internal timings
 *	      control logic, and in this case, the controller driver can ignore
 *	      this field.
 */
struct nand_op_instr {};

/*
 * Special handling must be done for the WAITRDY timeout parameter as it usually
 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 * tBERS (during an erase) which all of them are u64 values that cannot be
 * divided by usual kernel macros and must be handled with the special
 * DIV_ROUND_UP_ULL() macro.
 *
 * Cast to type of dividend is needed here to guarantee that the result won't
 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 * which is what the compiler does when it sees ternary operator with 2
 * different return types (picks the largest type to make sure there's no
 * loss).
 */
#define __DIVIDE(dividend, divisor)
#define PSEC_TO_NSEC(x)
#define PSEC_TO_MSEC(x)

#define NAND_OP_CMD(id, ns)

#define NAND_OP_ADDR(ncycles, cycles, ns)

#define NAND_OP_DATA_IN(l, b, ns)

#define NAND_OP_DATA_OUT(l, b, ns)

#define NAND_OP_8BIT_DATA_IN(l, b, ns)

#define NAND_OP_8BIT_DATA_OUT(l, b, ns)

#define NAND_OP_WAIT_RDY(tout_ms, ns)

/**
 * struct nand_subop - a sub operation
 * @cs: the CS line to select for this NAND sub-operation
 * @instrs: array of instructions
 * @ninstrs: length of the @instrs array
 * @first_instr_start_off: offset to start from for the first instruction
 *			   of the sub-operation
 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 *			of the sub-operation
 *
 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 * address instructions.
 *
 * When an operation cannot be handled as is by the NAND controller, it will
 * be split by the parser into sub-operations which will be passed to the
 * controller driver.
 */
struct nand_subop {};

unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
					 unsigned int op_id);
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
				     unsigned int op_id);

/**
 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 * @maxcycles: maximum number of address cycles the controller can issue in a
 *	       single step
 */
struct nand_op_parser_addr_constraints {};

/**
 * struct nand_op_parser_data_constraints - Constraints for data instructions
 * @maxlen: maximum data length that the controller can handle in a single step
 */
struct nand_op_parser_data_constraints {};

/**
 * struct nand_op_parser_pattern_elem - One element of a pattern
 * @type: the instructuction type
 * @optional: whether this element of the pattern is optional or mandatory
 * @ctx: address or data constraint
 * @ctx.addr: address constraint (number of cycles)
 * @ctx.data: data constraint (data length)
 */
struct nand_op_parser_pattern_elem {};

#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)

#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)

#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)

#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)

#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)

/**
 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 * @elems: array of pattern elements
 * @nelems: number of pattern elements in @elems array
 * @exec: the function that will issue a sub-operation
 *
 * A pattern is a list of elements, each element reprensenting one instruction
 * with its constraints. The pattern itself is used by the core to match NAND
 * chip operation with NAND controller operations.
 * Once a match between a NAND controller operation pattern and a NAND chip
 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 * hook is called so that the controller driver can issue the operation on the
 * bus.
 *
 * Controller drivers should declare as many patterns as they support and pass
 * this list of patterns (created with the help of the following macro) to
 * the nand_op_parser_exec_op() helper.
 */
struct nand_op_parser_pattern {};

#define NAND_OP_PARSER_PATTERN(_exec, ...)

/**
 * struct nand_op_parser - NAND controller operation parser descriptor
 * @patterns: array of supported patterns
 * @npatterns: length of the @patterns array
 *
 * The parser descriptor is just an array of supported patterns which will be
 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 * NAND operation (or tries to determine if a specific operation is supported).
 *
 * It is worth mentioning that patterns will be tested in their declaration
 * order, and the first match will be taken, so it's important to order patterns
 * appropriately so that simple/inefficient patterns are placed at the end of
 * the list. Usually, this is where you put single instruction patterns.
 */
struct nand_op_parser {};

#define NAND_OP_PARSER(...)

/**
 * struct nand_operation - NAND operation descriptor
 * @cs: the CS line to select for this NAND operation
 * @deassert_wp: set to true when the operation requires the WP pin to be
 *		 de-asserted (ERASE, PROG, ...)
 * @instrs: array of instructions to execute
 * @ninstrs: length of the @instrs array
 *
 * The actual operation structure that will be passed to chip->exec_op().
 */
struct nand_operation {};

#define NAND_OPERATION(_cs, _instrs)

#define NAND_DESTRUCTIVE_OPERATION(_cs, _instrs)

int nand_op_parser_exec_op(struct nand_chip *chip,
			   const struct nand_op_parser *parser,
			   const struct nand_operation *op, bool check_only);

static inline void nand_op_trace(const char *prefix,
				 const struct nand_op_instr *instr)
{}

/**
 * struct nand_controller_ops - Controller operations
 *
 * @attach_chip: this method is called after the NAND detection phase after
 *		 flash ID and MTD fields such as erase size, page size and OOB
 *		 size have been set up. ECC requirements are available if
 *		 provided by the NAND chip or device tree. Typically used to
 *		 choose the appropriate ECC configuration and allocate
 *		 associated resources.
 *		 This hook is optional.
 * @detach_chip: free all resources allocated/claimed in
 *		 nand_controller_ops->attach_chip().
 *		 This hook is optional.
 * @exec_op:	 controller specific method to execute NAND operations.
 *		 This method replaces chip->legacy.cmdfunc(),
 *		 chip->legacy.{read,write}_{buf,byte,word}(),
 *		 chip->legacy.dev_ready() and chip->legacy.waitfunc().
 * @setup_interface: setup the data interface and timing. If chipnr is set to
 *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
 *		     should not be applied but only checked.
 *		     This hook is optional.
 */
struct nand_controller_ops {};

/**
 * struct nand_controller - Structure used to describe a NAND controller
 *
 * @lock:		lock used to serialize accesses to the NAND controller
 * @ops:		NAND controller operations.
 * @supported_op:	NAND controller known-to-be-supported operations,
 *			only writable by the core after initial checking.
 * @supported_op.data_only_read: The controller supports reading more data from
 *			the bus without restarting an entire read operation nor
 *			changing the column.
 * @supported_op.cont_read: The controller supports sequential cache reads.
 * @controller_wp:	the controller is in charge of handling the WP pin.
 */
struct nand_controller {};

static inline void nand_controller_init(struct nand_controller *nfc)
{}

/**
 * struct nand_legacy - NAND chip legacy fields/hooks
 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
 * @select_chip: select/deselect a specific target/die
 * @read_byte: read one byte from the chip
 * @write_byte: write a single byte to the chip on the low 8 I/O lines
 * @write_buf: write data from the buffer to the chip
 * @read_buf: read data from the chip into the buffer
 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
 *	      to write command and address
 * @cmdfunc: hardware specific function for writing commands to the chip.
 * @dev_ready: hardware specific function for accessing device ready/busy line.
 *	       If set to NULL no access to ready/busy is available and the
 *	       ready/busy information is read from the chip status register.
 * @waitfunc: hardware specific function for wait on ready.
 * @block_bad: check if a block is bad, using OOB markers
 * @block_markbad: mark a block bad
 * @set_features: set the NAND chip features
 * @get_features: get the NAND chip features
 * @chip_delay: chip dependent delay for transferring data from array to read
 *		regs (tR).
 * @dummy_controller: dummy controller implementation for drivers that can
 *		      only control a single chip
 *
 * If you look at this structure you're already wrong. These fields/hooks are
 * all deprecated.
 */
struct nand_legacy {};

/**
 * struct nand_chip_ops - NAND chip operations
 * @suspend: Suspend operation
 * @resume: Resume operation
 * @lock_area: Lock operation
 * @unlock_area: Unlock operation
 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
 * @choose_interface_config: Choose the best interface configuration
 */
struct nand_chip_ops {};

/**
 * struct nand_manufacturer - NAND manufacturer structure
 * @desc: The manufacturer description
 * @priv: Private information for the manufacturer driver
 */
struct nand_manufacturer {};

/**
 * struct nand_secure_region - NAND secure region structure
 * @offset: Offset of the start of the secure region
 * @size: Size of the secure region
 */
struct nand_secure_region {};

/**
 * struct nand_chip - NAND Private Flash Chip Data
 * @base: Inherit from the generic NAND device
 * @id: Holds NAND ID
 * @parameters: Holds generic parameters under an easily readable form
 * @manufacturer: Manufacturer information
 * @ops: NAND chip operations
 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
 *          to use any of these fields/hooks, and if you're modifying an
 *          existing driver that is using those fields/hooks, you should
 *          consider reworking the driver and avoid using them.
 * @options: Various chip options. They can partly be set to inform nand_scan
 *           about special functionality. See the defines for further
 *           explanation.
 * @current_interface_config: The currently used NAND interface configuration
 * @best_interface_config: The best NAND interface configuration which fits both
 *                         the NAND chip and NAND controller constraints. If
 *                         unset, the default reset interface configuration must
 *                         be used.
 * @bbt_erase_shift: Number of address bits in a bbt entry
 * @bbt_options: Bad block table specific options. All options used here must
 *               come from bbm.h. By default, these options will be copied to
 *               the appropriate nand_bbt_descr's.
 * @badblockpos: Bad block marker position in the oob area
 * @badblockbits: Minimum number of set bits in a good block's bad block marker
 *                position; i.e., BBM = 11110111b is good when badblockbits = 7
 * @bbt_td: Bad block table descriptor for flash lookup
 * @bbt_md: Bad block table mirror descriptor
 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
 * @bbt: Bad block table pointer
 * @page_shift: Number of address bits in a page (column address bits)
 * @phys_erase_shift: Number of address bits in a physical eraseblock
 * @chip_shift: Number of address bits in one chip
 * @pagemask: Page number mask = number of (pages / chip) - 1
 * @subpagesize: Holds the subpagesize
 * @data_buf: Buffer for data, size is (page size + oobsize)
 * @oob_poi: pointer on the OOB area covered by data_buf
 * @pagecache: Structure containing page cache related fields
 * @pagecache.bitflips: Number of bitflips of the cached page
 * @pagecache.page: Page number currently in the cache. -1 means no page is
 *                  currently cached
 * @buf_align: Minimum buffer alignment required by a platform
 * @lock: Lock protecting the suspended field. Also used to serialize accesses
 *        to the NAND device
 * @suspended: Set to 1 when the device is suspended, 0 when it's not
 * @resume_wq: wait queue to sleep if rawnand is in suspended state.
 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
 *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
 *          NAND Controller drivers should not modify this value, but they're
 *          allowed to read it.
 * @read_retries: The number of read retry modes supported
 * @secure_regions: Structure containing the secure regions info
 * @nr_secure_regions: Number of secure regions
 * @cont_read: Sequential page read internals
 * @cont_read.ongoing: Whether a continuous read is ongoing or not
 * @cont_read.first_page: Start of the continuous read operation
 * @cont_read.pause_page: End of the current sequential cache read operation
 * @cont_read.last_page: End of the continuous read operation
 * @controller: The hardware controller	structure which is shared among multiple
 *              independent devices
 * @ecc: The ECC controller structure
 * @priv: Chip private data
 */
struct nand_chip {};

static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
{}

static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
{}

static inline void *nand_get_controller_data(struct nand_chip *chip)
{}

static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
{}

static inline void nand_set_manufacturer_data(struct nand_chip *chip,
					      void *priv)
{}

static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
{}

static inline void nand_set_flash_node(struct nand_chip *chip,
				       struct device_node *np)
{}

static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
{}

/**
 * nand_get_interface_config - Retrieve the current interface configuration
 *                             of a NAND chip
 * @chip: The NAND chip
 */
static inline const struct nand_interface_config *
nand_get_interface_config(struct nand_chip *chip)
{}

/*
 * A helper for defining older NAND chips where the second ID byte fully
 * defined the chip, including the geometry (chip size, eraseblock size, page
 * size). All these chips have 512 bytes NAND page size.
 */
#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)

/*
 * A helper for defining newer chips which report their page size and
 * eraseblock size via the extended ID bytes.
 *
 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
 * device ID now only represented a particular total chip size (and voltage,
 * buswidth), and the page size, eraseblock size, and OOB size could vary while
 * using the same device ID.
 */
#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)

#define NAND_ECC_INFO(_strength, _step)
#define NAND_ECC_STRENGTH(type)
#define NAND_ECC_STEP(type)

/**
 * struct nand_flash_dev - NAND Flash Device ID Structure
 * @name: a human-readable name of the NAND chip
 * @dev_id: the device ID (the second byte of the full chip ID array)
 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
 *          memory address as ``id[0]``)
 * @dev_id: device ID part of the full chip ID array (refers the same memory
 *          address as ``id[1]``)
 * @id: full device ID array
 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
 *            well as the eraseblock size) is determined from the extended NAND
 *            chip ID array)
 * @chipsize: total chip size in MiB
 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
 * @options: stores various chip bit options
 * @id_len: The valid length of the @id.
 * @oobsize: OOB size
 * @ecc: ECC correctability and step information from the datasheet.
 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
 *                   @ecc_strength_ds in nand_chip{}.
 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
 *               For example, the "4bit ECC for each 512Byte" can be set with
 *               NAND_ECC_INFO(4, 512).
 */
struct nand_flash_dev {};

int nand_create_bbt(struct nand_chip *chip);

/*
 * Check if it is a SLC nand.
 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
 * We do not distinguish the MLC and TLC now.
 */
static inline bool nand_is_slc(struct nand_chip *chip)
{}

/**
 * nand_opcode_8bits - Check if the opcode's address should be sent only on the
 *	lower 8 bits
 * @command: opcode to check
 */
static inline int nand_opcode_8bits(unsigned int command)
{}

int rawnand_sw_hamming_init(struct nand_chip *chip);
int rawnand_sw_hamming_calculate(struct nand_chip *chip,
				 const unsigned char *buf,
				 unsigned char *code);
int rawnand_sw_hamming_correct(struct nand_chip *chip,
			       unsigned char *buf,
			       unsigned char *read_ecc,
			       unsigned char *calc_ecc);
void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
int rawnand_sw_bch_init(struct nand_chip *chip);
int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
			   unsigned char *read_ecc, unsigned char *calc_ecc);
void rawnand_sw_bch_cleanup(struct nand_chip *chip);

int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int threshold);

int nand_ecc_choose_conf(struct nand_chip *chip,
			 const struct nand_ecc_caps *caps, int oobavail);

/* Default write_oob implementation */
int nand_write_oob_std(struct nand_chip *chip, int page);

/* Default read_oob implementation */
int nand_read_oob_std(struct nand_chip *chip, int page);

/* Stub used by drivers that do not support GET/SET FEATURES operations */
int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
				  u8 *subfeature_param);

/* read_page_raw implementations */
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
		       int page);
int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
				  int oob_required, int page);

/* write_page_raw implementations */
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
			int oob_required, int page);
int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
				   int oob_required, int page);

/* Reset and initialize a NAND device */
int nand_reset(struct nand_chip *chip, int chipnr);

/* NAND operation helpers */
int nand_reset_op(struct nand_chip *chip);
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
		   unsigned int len);
int nand_status_op(struct nand_chip *chip, u8 *status);
int nand_exit_status_op(struct nand_chip *chip);
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, void *buf, unsigned int len);
int nand_change_read_column_op(struct nand_chip *chip,
			       unsigned int offset_in_page, void *buf,
			       unsigned int len, bool force_8bit);
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
		     unsigned int offset_in_page, void *buf, unsigned int len);
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
			    unsigned int offset_in_page, const void *buf,
			    unsigned int len);
int nand_prog_page_end_op(struct nand_chip *chip);
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, const void *buf,
		      unsigned int len);
int nand_change_write_column_op(struct nand_chip *chip,
				unsigned int offset_in_page, const void *buf,
				unsigned int len, bool force_8bit);
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
		      bool force_8bit, bool check_only);
int nand_write_data_op(struct nand_chip *chip, const void *buf,
		       unsigned int len, bool force_8bit);
int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
				   int oob_required, int page);

/* Scan and identify a NAND device */
int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
		       struct nand_flash_dev *ids);

static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
{}

/* Internal helper for board drivers which need to override command function */
void nand_wait_ready(struct nand_chip *chip);

/*
 * Free resources held by the NAND device, must be called on error after a
 * sucessful nand_scan().
 */
void nand_cleanup(struct nand_chip *chip);

/*
 * External helper for controller drivers that have to implement the WAITRDY
 * instruction and have no physical pin to check it.
 */
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
		      unsigned long timeout_ms);

/* Select/deselect a NAND target. */
void nand_select_target(struct nand_chip *chip, unsigned int cs);
void nand_deselect_target(struct nand_chip *chip);

/* Bitops */
void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
		       unsigned int src_off, unsigned int nbits);

/**
 * nand_get_data_buf() - Get the internal page buffer
 * @chip: NAND chip object
 *
 * Returns the pre-allocated page buffer after invalidating the cache. This
 * function should be used by drivers that do not want to allocate their own
 * bounce buffer and still need such a buffer for specific operations (most
 * commonly when reading OOB data only).
 *
 * Be careful to never call this function in the write/write_oob path, because
 * the core may have placed the data to be written out in this buffer.
 *
 * Return: pointer to the page cache buffer
 */
static inline void *nand_get_data_buf(struct nand_chip *chip)
{}

/* Parse the gpio-cs property */
int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
			     unsigned int *ncs_array);

#endif /* __LINUX_MTD_RAWNAND_H */