/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STATIC_CALL_H #define _LINUX_STATIC_CALL_H /* * Static call support * * Static calls use code patching to hard-code function pointers into direct * branch instructions. They give the flexibility of function pointers, but * with improved performance. This is especially important for cases where * retpolines would otherwise be used, as retpolines can significantly impact * performance. * * * API overview: * * DECLARE_STATIC_CALL(name, func); * DEFINE_STATIC_CALL(name, func); * DEFINE_STATIC_CALL_NULL(name, typename); * DEFINE_STATIC_CALL_RET0(name, typename); * * __static_call_return0; * * static_call(name)(args...); * static_call_cond(name)(args...); * static_call_update(name, func); * static_call_query(name); * * EXPORT_STATIC_CALL{,_TRAMP}{,_GPL}() * * Usage example: * * # Start with the following functions (with identical prototypes): * int func_a(int arg1, int arg2); * int func_b(int arg1, int arg2); * * # Define a 'my_name' reference, associated with func_a() by default * DEFINE_STATIC_CALL(my_name, func_a); * * # Call func_a() * static_call(my_name)(arg1, arg2); * * # Update 'my_name' to point to func_b() * static_call_update(my_name, &func_b); * * # Call func_b() * static_call(my_name)(arg1, arg2); * * * Implementation details: * * This requires some arch-specific code (CONFIG_HAVE_STATIC_CALL). * Otherwise basic indirect calls are used (with function pointers). * * Each static_call() site calls into a trampoline associated with the name. * The trampoline has a direct branch to the default function. Updates to a * name will modify the trampoline's branch destination. * * If the arch has CONFIG_HAVE_STATIC_CALL_INLINE, then the call sites * themselves will be patched at runtime to call the functions directly, * rather than calling through the trampoline. This requires objtool or a * compiler plugin to detect all the static_call() sites and annotate them * in the .static_call_sites section. * * * Notes on NULL function pointers: * * Static_call()s support NULL functions, with many of the caveats that * regular function pointers have. * * Clearly calling a NULL function pointer is 'BAD', so too for * static_call()s (although when HAVE_STATIC_CALL it might not be immediately * fatal). A NULL static_call can be the result of: * * DECLARE_STATIC_CALL_NULL(my_static_call, void (*)(int)); * * which is equivalent to declaring a NULL function pointer with just a * typename: * * void (*my_func_ptr)(int arg1) = NULL; * * or using static_call_update() with a NULL function. In both cases the * HAVE_STATIC_CALL implementation will patch the trampoline with a RET * instruction, instead of an immediate tail-call JMP. HAVE_STATIC_CALL_INLINE * architectures can patch the trampoline call to a NOP. * * In all cases, any argument evaluation is unconditional. Unlike a regular * conditional function pointer call: * * if (my_func_ptr) * my_func_ptr(arg1) * * where the argument evaludation also depends on the pointer value. * * When calling a static_call that can be NULL, use: * * static_call_cond(name)(arg1); * * which will include the required value tests to avoid NULL-pointer * dereferences. * * To query which function is currently set to be called, use: * * func = static_call_query(name); * * * DEFINE_STATIC_CALL_RET0 / __static_call_return0: * * Just like how DEFINE_STATIC_CALL_NULL() / static_call_cond() optimize the * conditional void function call, DEFINE_STATIC_CALL_RET0 / * __static_call_return0 optimize the do nothing return 0 function. * * This feature is strictly UB per the C standard (since it casts a function * pointer to a different signature) and relies on the architecture ABI to * make things work. In particular it relies on Caller Stack-cleanup and the * whole return register being clobbered for short return values. All normal * CDECL style ABIs conform. * * In particular the x86_64 implementation replaces the 5 byte CALL * instruction at the callsite with a 5 byte clear of the RAX register, * completely eliding any function call overhead. * * Notably argument setup is unconditional. * * * EXPORT_STATIC_CALL() vs EXPORT_STATIC_CALL_TRAMP(): * * The difference is that the _TRAMP variant tries to only export the * trampoline with the result that a module can use static_call{,_cond}() but * not static_call_update(). * */ #include <linux/types.h> #include <linux/cpu.h> #include <linux/static_call_types.h> #ifdef CONFIG_HAVE_STATIC_CALL #include <asm/static_call.h> /* * Either @site or @tramp can be NULL. */ extern void arch_static_call_transform(void *site, void *tramp, void *func, bool tail); #define STATIC_CALL_TRAMP_ADDR(name) … #else #define STATIC_CALL_TRAMP_ADDR … #endif #define static_call_update(name, func) … #define static_call_query(name) … #ifdef CONFIG_HAVE_STATIC_CALL_INLINE extern int __init static_call_init(void); extern void static_call_force_reinit(void); struct static_call_mod { … }; /* For finding the key associated with a trampoline */ struct static_call_tramp_key { … }; extern void __static_call_update(struct static_call_key *key, void *tramp, void *func); extern int static_call_mod_init(struct module *mod); extern int static_call_text_reserved(void *start, void *end); extern long __static_call_return0(void); #define DEFINE_STATIC_CALL(name, _func) … #define DEFINE_STATIC_CALL_NULL(name, _func) … #define DEFINE_STATIC_CALL_RET0(name, _func) … #define static_call_cond(name) … #define EXPORT_STATIC_CALL(name) … #define EXPORT_STATIC_CALL_GPL(name) … /* Leave the key unexported, so modules can't change static call targets: */ #define EXPORT_STATIC_CALL_TRAMP(name) … #define EXPORT_STATIC_CALL_TRAMP_GPL(name) … #elif defined(CONFIG_HAVE_STATIC_CALL) static inline int static_call_init(void) { return 0; } #define DEFINE_STATIC_CALL … #define DEFINE_STATIC_CALL_NULL … #define DEFINE_STATIC_CALL_RET0 … #define static_call_cond … static inline void __static_call_update(struct static_call_key *key, void *tramp, void *func) { cpus_read_lock(); WRITE_ONCE(key->func, func); arch_static_call_transform(NULL, tramp, func, false); cpus_read_unlock(); } static inline int static_call_text_reserved(void *start, void *end) { return 0; } extern long __static_call_return0(void); #define EXPORT_STATIC_CALL … #define EXPORT_STATIC_CALL_GPL … /* Leave the key unexported, so modules can't change static call targets: */ #define EXPORT_STATIC_CALL_TRAMP … #define EXPORT_STATIC_CALL_TRAMP_GPL … #else /* Generic implementation */ static inline int static_call_init(void) { return 0; } static inline long __static_call_return0(void) { return 0; } #define __DEFINE_STATIC_CALL … #define DEFINE_STATIC_CALL … #define DEFINE_STATIC_CALL_NULL … #define DEFINE_STATIC_CALL_RET0 … static inline void __static_call_nop(void) { } /* * This horrific hack takes care of two things: * * - it ensures the compiler will only load the function pointer ONCE, * which avoids a reload race. * * - it ensures the argument evaluation is unconditional, similar * to the HAVE_STATIC_CALL variant. * * Sadly current GCC/Clang (10 for both) do not optimize this properly * and will emit an indirect call for the NULL case :-( */ #define __static_call_cond … #define static_call_cond … static inline void __static_call_update(struct static_call_key *key, void *tramp, void *func) { WRITE_ONCE(key->func, func); } static inline int static_call_text_reserved(void *start, void *end) { return 0; } #define EXPORT_STATIC_CALL … #define EXPORT_STATIC_CALL_GPL … #endif /* CONFIG_HAVE_STATIC_CALL */ #endif /* _LINUX_STATIC_CALL_H */