// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2003 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_shared.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_quota.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_trans_space.h" #include "xfs_trans_priv.h" #include "xfs_qm.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_bmap_btree.h" #include "xfs_error.h" #include "xfs_health.h" /* * Lock order: * * ip->i_lock * qi->qi_tree_lock * dquot->q_qlock (xfs_dqlock() and friends) * dquot->q_flush (xfs_dqflock() and friends) * qi->qi_lru_lock * * If two dquots need to be locked the order is user before group/project, * otherwise by the lowest id first, see xfs_dqlock2. */ struct kmem_cache *xfs_dqtrx_cache; static struct kmem_cache *xfs_dquot_cache; static struct lock_class_key xfs_dquot_group_class; static struct lock_class_key xfs_dquot_project_class; /* Record observations of quota corruption with the health tracking system. */ static void xfs_dquot_mark_sick( struct xfs_dquot *dqp) { … } /* * This is called to free all the memory associated with a dquot */ void xfs_qm_dqdestroy( struct xfs_dquot *dqp) { … } /* * If default limits are in force, push them into the dquot now. * We overwrite the dquot limits only if they are zero and this * is not the root dquot. */ void xfs_qm_adjust_dqlimits( struct xfs_dquot *dq) { … } /* Set the expiration time of a quota's grace period. */ time64_t xfs_dquot_set_timeout( struct xfs_mount *mp, time64_t timeout) { … } /* Set the length of the default grace period. */ time64_t xfs_dquot_set_grace_period( time64_t grace) { … } /* * Determine if this quota counter is over either limit and set the quota * timers as appropriate. */ static inline void xfs_qm_adjust_res_timer( struct xfs_mount *mp, struct xfs_dquot_res *res, struct xfs_quota_limits *qlim) { … } /* * Check the limits and timers of a dquot and start or reset timers * if necessary. * This gets called even when quota enforcement is OFF, which makes our * life a little less complicated. (We just don't reject any quota * reservations in that case, when enforcement is off). * We also return 0 as the values of the timers in Q_GETQUOTA calls, when * enforcement's off. * In contrast, warnings are a little different in that they don't * 'automatically' get started when limits get exceeded. They do * get reset to zero, however, when we find the count to be under * the soft limit (they are only ever set non-zero via userspace). */ void xfs_qm_adjust_dqtimers( struct xfs_dquot *dq) { … } /* * initialize a buffer full of dquots and log the whole thing */ void xfs_qm_init_dquot_blk( struct xfs_trans *tp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_buf *bp) { … } /* * Initialize the dynamic speculative preallocation thresholds. The lo/hi * watermarks correspond to the soft and hard limits by default. If a soft limit * is not specified, we use 95% of the hard limit. */ void xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) { … } /* * Ensure that the given in-core dquot has a buffer on disk backing it, and * return the buffer locked and held. This is called when the bmapi finds a * hole. */ STATIC int xfs_dquot_disk_alloc( struct xfs_dquot *dqp, struct xfs_buf **bpp) { … } /* * Read in the in-core dquot's on-disk metadata and return the buffer. * Returns ENOENT to signal a hole. */ STATIC int xfs_dquot_disk_read( struct xfs_mount *mp, struct xfs_dquot *dqp, struct xfs_buf **bpp) { … } /* Allocate and initialize everything we need for an incore dquot. */ STATIC struct xfs_dquot * xfs_dquot_alloc( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type) { … } /* Check the ondisk dquot's id and type match what the incore dquot expects. */ static bool xfs_dquot_check_type( struct xfs_dquot *dqp, struct xfs_disk_dquot *ddqp) { … } /* Copy the in-core quota fields in from the on-disk buffer. */ STATIC int xfs_dquot_from_disk( struct xfs_dquot *dqp, struct xfs_buf *bp) { … } /* Copy the in-core quota fields into the on-disk buffer. */ void xfs_dquot_to_disk( struct xfs_disk_dquot *ddqp, struct xfs_dquot *dqp) { … } /* * Read in the ondisk dquot using dqtobp() then copy it to an incore version, * and release the buffer immediately. If @can_alloc is true, fill any * holes in the on-disk metadata. */ static int xfs_qm_dqread( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **dqpp) { … } /* * Advance to the next id in the current chunk, or if at the * end of the chunk, skip ahead to first id in next allocated chunk * using the SEEK_DATA interface. */ static int xfs_dq_get_next_id( struct xfs_mount *mp, xfs_dqtype_t type, xfs_dqid_t *id) { … } /* * Look up the dquot in the in-core cache. If found, the dquot is returned * locked and ready to go. */ static struct xfs_dquot * xfs_qm_dqget_cache_lookup( struct xfs_mount *mp, struct xfs_quotainfo *qi, struct radix_tree_root *tree, xfs_dqid_t id) { … } /* * Try to insert a new dquot into the in-core cache. If an error occurs the * caller should throw away the dquot and start over. Otherwise, the dquot * is returned locked (and held by the cache) as if there had been a cache * hit. * * The insert needs to be done under memalloc_nofs context because the radix * tree can do memory allocation during insert. The qi->qi_tree_lock is taken in * memory reclaim when freeing unused dquots, so we cannot have the radix tree * node allocation recursing into filesystem reclaim whilst we hold the * qi_tree_lock. */ static int xfs_qm_dqget_cache_insert( struct xfs_mount *mp, struct xfs_quotainfo *qi, struct radix_tree_root *tree, xfs_dqid_t id, struct xfs_dquot *dqp) { … } /* Check our input parameters. */ static int xfs_qm_dqget_checks( struct xfs_mount *mp, xfs_dqtype_t type) { … } /* * Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a * locked dquot, doing an allocation (if requested) as needed. */ int xfs_qm_dqget( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **O_dqpp) { … } /* * Given a dquot id and type, read and initialize a dquot from the on-disk * metadata. This function is only for use during quota initialization so * it ignores the dquot cache assuming that the dquot shrinker isn't set up. * The caller is responsible for _qm_dqdestroy'ing the returned dquot. */ int xfs_qm_dqget_uncached( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_dquot **dqpp) { … } /* Return the quota id for a given inode and type. */ xfs_dqid_t xfs_qm_id_for_quotatype( struct xfs_inode *ip, xfs_dqtype_t type) { … } /* * Return the dquot for a given inode and type. If @can_alloc is true, then * allocate blocks if needed. The inode's ILOCK must be held and it must not * have already had an inode attached. */ int xfs_qm_dqget_inode( struct xfs_inode *ip, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **O_dqpp) { … } /* * Starting at @id and progressing upwards, look for an initialized incore * dquot, lock it, and return it. */ int xfs_qm_dqget_next( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_dquot **dqpp) { … } /* * Release a reference to the dquot (decrement ref-count) and unlock it. * * If there is a group quota attached to this dquot, carefully release that * too without tripping over deadlocks'n'stuff. */ void xfs_qm_dqput( struct xfs_dquot *dqp) { … } /* * Release a dquot. Flush it if dirty, then dqput() it. * dquot must not be locked. */ void xfs_qm_dqrele( struct xfs_dquot *dqp) { … } /* * This is the dquot flushing I/O completion routine. It is called * from interrupt level when the buffer containing the dquot is * flushed to disk. It is responsible for removing the dquot logitem * from the AIL if it has not been re-logged, and unlocking the dquot's * flush lock. This behavior is very similar to that of inodes.. */ static void xfs_qm_dqflush_done( struct xfs_log_item *lip) { … } void xfs_buf_dquot_iodone( struct xfs_buf *bp) { … } void xfs_buf_dquot_io_fail( struct xfs_buf *bp) { … } /* Check incore dquot for errors before we flush. */ static xfs_failaddr_t xfs_qm_dqflush_check( struct xfs_dquot *dqp) { … } /* * Write a modified dquot to disk. * The dquot must be locked and the flush lock too taken by caller. * The flush lock will not be unlocked until the dquot reaches the disk, * but the dquot is free to be unlocked and modified by the caller * in the interim. Dquot is still locked on return. This behavior is * identical to that of inodes. */ int xfs_qm_dqflush( struct xfs_dquot *dqp, struct xfs_buf **bpp) { … } /* * Lock two xfs_dquot structures. * * To avoid deadlocks we always lock the quota structure with * the lowerd id first. */ void xfs_dqlock2( struct xfs_dquot *d1, struct xfs_dquot *d2) { … } static int xfs_dqtrx_cmp( const void *a, const void *b) { … } void xfs_dqlockn( struct xfs_dqtrx *q) { … } int __init xfs_qm_init(void) { … } void xfs_qm_exit(void) { … }