// SPDX-License-Identifier: GPL-2.0-only /* * fs/dcache.c * * Complete reimplementation * (C) 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ /* * Notes on the allocation strategy: * * The dcache is a master of the icache - whenever a dcache entry * exists, the inode will always exist. "iput()" is done either when * the dcache entry is deleted or garbage collected. */ #include <linux/ratelimit.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/fscrypt.h> #include <linux/fsnotify.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/cache.h> #include <linux/export.h> #include <linux/security.h> #include <linux/seqlock.h> #include <linux/memblock.h> #include <linux/bit_spinlock.h> #include <linux/rculist_bl.h> #include <linux/list_lru.h> #include "internal.h" #include "mount.h" #include <asm/runtime-const.h> /* * Usage: * dcache->d_inode->i_lock protects: * - i_dentry, d_u.d_alias, d_inode of aliases * dcache_hash_bucket lock protects: * - the dcache hash table * s_roots bl list spinlock protects: * - the s_roots list (see __d_drop) * dentry->d_sb->s_dentry_lru_lock protects: * - the dcache lru lists and counters * d_lock protects: * - d_flags * - d_name * - d_lru * - d_count * - d_unhashed() * - d_parent and d_chilren * - childrens' d_sib and d_parent * - d_u.d_alias, d_inode * * Ordering: * dentry->d_inode->i_lock * dentry->d_lock * dentry->d_sb->s_dentry_lru_lock * dcache_hash_bucket lock * s_roots lock * * If there is an ancestor relationship: * dentry->d_parent->...->d_parent->d_lock * ... * dentry->d_parent->d_lock * dentry->d_lock * * If no ancestor relationship: * arbitrary, since it's serialized on rename_lock */ int sysctl_vfs_cache_pressure __read_mostly = …; EXPORT_SYMBOL_GPL(…); __cacheline_aligned_in_smp DEFINE_SEQLOCK(…); EXPORT_SYMBOL(…); static struct kmem_cache *dentry_cache __ro_after_init; const struct qstr empty_name = …; EXPORT_SYMBOL(…); const struct qstr slash_name = …; EXPORT_SYMBOL(…); const struct qstr dotdot_name = …; EXPORT_SYMBOL(…); /* * This is the single most critical data structure when it comes * to the dcache: the hashtable for lookups. Somebody should try * to make this good - I've just made it work. * * This hash-function tries to avoid losing too many bits of hash * information, yet avoid using a prime hash-size or similar. */ static unsigned int d_hash_shift __ro_after_init; static struct hlist_bl_head *dentry_hashtable __ro_after_init; static inline struct hlist_bl_head *d_hash(unsigned long hashlen) { … } #define IN_LOOKUP_SHIFT … static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, unsigned int hash) { … } struct dentry_stat_t { … }; static DEFINE_PER_CPU(long, nr_dentry); static DEFINE_PER_CPU(long, nr_dentry_unused); static DEFINE_PER_CPU(long, nr_dentry_negative); #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) /* Statistics gathering. */ static struct dentry_stat_t dentry_stat = …; /* * Here we resort to our own counters instead of using generic per-cpu counters * for consistency with what the vfs inode code does. We are expected to harvest * better code and performance by having our own specialized counters. * * Please note that the loop is done over all possible CPUs, not over all online * CPUs. The reason for this is that we don't want to play games with CPUs going * on and off. If one of them goes off, we will just keep their counters. * * glommer: See cffbc8a for details, and if you ever intend to change this, * please update all vfs counters to match. */ static long get_nr_dentry(void) { … } static long get_nr_dentry_unused(void) { … } static long get_nr_dentry_negative(void) { … } static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { … } static struct ctl_table fs_dcache_sysctls[] = …; static int __init init_fs_dcache_sysctls(void) { … } fs_initcall(init_fs_dcache_sysctls); #endif /* * Compare 2 name strings, return 0 if they match, otherwise non-zero. * The strings are both count bytes long, and count is non-zero. */ #ifdef CONFIG_DCACHE_WORD_ACCESS #include <asm/word-at-a-time.h> /* * NOTE! 'cs' and 'scount' come from a dentry, so it has a * aligned allocation for this particular component. We don't * strictly need the load_unaligned_zeropad() safety, but it * doesn't hurt either. * * In contrast, 'ct' and 'tcount' can be from a pathname, and do * need the careful unaligned handling. */ static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { … } #else static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { do { if (*cs != *ct) return 1; cs++; ct++; tcount--; } while (tcount); return 0; } #endif static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) { … } struct external_name { … }; static inline struct external_name *external_name(struct dentry *dentry) { … } static void __d_free(struct rcu_head *head) { … } static void __d_free_external(struct rcu_head *head) { … } static inline int dname_external(const struct dentry *dentry) { … } void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) { … } EXPORT_SYMBOL(…); void release_dentry_name_snapshot(struct name_snapshot *name) { … } EXPORT_SYMBOL(…); static inline void __d_set_inode_and_type(struct dentry *dentry, struct inode *inode, unsigned type_flags) { … } static inline void __d_clear_type_and_inode(struct dentry *dentry) { … } static void dentry_free(struct dentry *dentry) { … } /* * Release the dentry's inode, using the filesystem * d_iput() operation if defined. */ static void dentry_unlink_inode(struct dentry * dentry) __releases(dentry->d_lock) __releases(dentry->d_inode->i_lock) { … } /* * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry * is in use - which includes both the "real" per-superblock * LRU list _and_ the DCACHE_SHRINK_LIST use. * * The DCACHE_SHRINK_LIST bit is set whenever the dentry is * on the shrink list (ie not on the superblock LRU list). * * The per-cpu "nr_dentry_unused" counters are updated with * the DCACHE_LRU_LIST bit. * * The per-cpu "nr_dentry_negative" counters are only updated * when deleted from or added to the per-superblock LRU list, not * from/to the shrink list. That is to avoid an unneeded dec/inc * pair when moving from LRU to shrink list in select_collect(). * * These helper functions make sure we always follow the * rules. d_lock must be held by the caller. */ #define D_FLAG_VERIFY(dentry,x) … static void d_lru_add(struct dentry *dentry) { … } static void d_lru_del(struct dentry *dentry) { … } static void d_shrink_del(struct dentry *dentry) { … } static void d_shrink_add(struct dentry *dentry, struct list_head *list) { … } /* * These can only be called under the global LRU lock, ie during the * callback for freeing the LRU list. "isolate" removes it from the * LRU lists entirely, while shrink_move moves it to the indicated * private list. */ static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) { … } static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, struct list_head *list) { … } static void ___d_drop(struct dentry *dentry) { … } void __d_drop(struct dentry *dentry) { … } EXPORT_SYMBOL(…); /** * d_drop - drop a dentry * @dentry: dentry to drop * * d_drop() unhashes the entry from the parent dentry hashes, so that it won't * be found through a VFS lookup any more. Note that this is different from * deleting the dentry - d_delete will try to mark the dentry negative if * possible, giving a successful _negative_ lookup, while d_drop will * just make the cache lookup fail. * * d_drop() is used mainly for stuff that wants to invalidate a dentry for some * reason (NFS timeouts or autofs deletes). * * __d_drop requires dentry->d_lock * * ___d_drop doesn't mark dentry as "unhashed" * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). */ void d_drop(struct dentry *dentry) { … } EXPORT_SYMBOL(…); static inline void dentry_unlist(struct dentry *dentry) { … } static struct dentry *__dentry_kill(struct dentry *dentry) { … } /* * Lock a dentry for feeding it to __dentry_kill(). * Called under rcu_read_lock() and dentry->d_lock; the former * guarantees that nothing we access will be freed under us. * Note that dentry is *not* protected from concurrent dentry_kill(), * d_delete(), etc. * * Return false if dentry is busy. Otherwise, return true and have * that dentry's inode locked. */ static bool lock_for_kill(struct dentry *dentry) { … } /* * Decide if dentry is worth retaining. Usually this is called with dentry * locked; if not locked, we are more limited and might not be able to tell * without a lock. False in this case means "punt to locked path and recheck". * * In case we aren't locked, these predicates are not "stable". However, it is * sufficient that at some point after we dropped the reference the dentry was * hashed and the flags had the proper value. Other dentry users may have * re-gotten a reference to the dentry and change that, but our work is done - * we can leave the dentry around with a zero refcount. */ static inline bool retain_dentry(struct dentry *dentry, bool locked) { … } void d_mark_dontcache(struct inode *inode) { … } EXPORT_SYMBOL(…); /* * Try to do a lockless dput(), and return whether that was successful. * * If unsuccessful, we return false, having already taken the dentry lock. * In that case refcount is guaranteed to be zero and we have already * decided that it's not worth keeping around. * * The caller needs to hold the RCU read lock, so that the dentry is * guaranteed to stay around even if the refcount goes down to zero! */ static inline bool fast_dput(struct dentry *dentry) { … } /* * This is dput * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ /* * dput - release a dentry * @dentry: dentry to release * * Release a dentry. This will drop the usage count and if appropriate * call the dentry unlink method as well as removing it from the queues and * releasing its resources. If the parent dentries were scheduled for release * they too may now get deleted. */ void dput(struct dentry *dentry) { … } EXPORT_SYMBOL(…); static void to_shrink_list(struct dentry *dentry, struct list_head *list) __must_hold(&dentry->d_lock) { … } void dput_to_list(struct dentry *dentry, struct list_head *list) { … } struct dentry *dget_parent(struct dentry *dentry) { … } EXPORT_SYMBOL(…); static struct dentry * __d_find_any_alias(struct inode *inode) { … } /** * d_find_any_alias - find any alias for a given inode * @inode: inode to find an alias for * * If any aliases exist for the given inode, take and return a * reference for one of them. If no aliases exist, return %NULL. */ struct dentry *d_find_any_alias(struct inode *inode) { … } EXPORT_SYMBOL(…); static struct dentry *__d_find_alias(struct inode *inode) { … } /** * d_find_alias - grab a hashed alias of inode * @inode: inode in question * * If inode has a hashed alias, or is a directory and has any alias, * acquire the reference to alias and return it. Otherwise return NULL. * Notice that if inode is a directory there can be only one alias and * it can be unhashed only if it has no children, or if it is the root * of a filesystem, or if the directory was renamed and d_revalidate * was the first vfs operation to notice. * * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer * any other hashed alias over that one. */ struct dentry *d_find_alias(struct inode *inode) { … } EXPORT_SYMBOL(…); /* * Caller MUST be holding rcu_read_lock() and be guaranteed * that inode won't get freed until rcu_read_unlock(). */ struct dentry *d_find_alias_rcu(struct inode *inode) { … } /* * Try to kill dentries associated with this inode. * WARNING: you must own a reference to inode. */ void d_prune_aliases(struct inode *inode) { … } EXPORT_SYMBOL(…); static inline void shrink_kill(struct dentry *victim) { … } void shrink_dentry_list(struct list_head *list) { … } static enum lru_status dentry_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { … } /** * prune_dcache_sb - shrink the dcache * @sb: superblock * @sc: shrink control, passed to list_lru_shrink_walk() * * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This * is done when we need more memory and called from the superblock shrinker * function. * * This function may fail to free any resources if all the dentries are in * use. */ long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) { … } static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { … } /** * shrink_dcache_sb - shrink dcache for a superblock * @sb: superblock * * Shrink the dcache for the specified super block. This is used to free * the dcache before unmounting a file system. */ void shrink_dcache_sb(struct super_block *sb) { … } EXPORT_SYMBOL(…); /** * enum d_walk_ret - action to talke during tree walk * @D_WALK_CONTINUE: contrinue walk * @D_WALK_QUIT: quit walk * @D_WALK_NORETRY: quit when retry is needed * @D_WALK_SKIP: skip this dentry and its children */ enum d_walk_ret { … }; /** * d_walk - walk the dentry tree * @parent: start of walk * @data: data passed to @enter() and @finish() * @enter: callback when first entering the dentry * * The @enter() callbacks are called with d_lock held. */ static void d_walk(struct dentry *parent, void *data, enum d_walk_ret (*enter)(void *, struct dentry *)) { … } struct check_mount { … }; static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) { … } /** * path_has_submounts - check for mounts over a dentry in the * current namespace. * @parent: path to check. * * Return true if the parent or its subdirectories contain * a mount point in the current namespace. */ int path_has_submounts(const struct path *parent) { … } EXPORT_SYMBOL(…); /* * Called by mount code to set a mountpoint and check if the mountpoint is * reachable (e.g. NFS can unhash a directory dentry and then the complete * subtree can become unreachable). * * Only one of d_invalidate() and d_set_mounted() must succeed. For * this reason take rename_lock and d_lock on dentry and ancestors. */ int d_set_mounted(struct dentry *dentry) { … } /* * Search the dentry child list of the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_children list is non-empty and continue * searching. * * It returns zero iff there are no unused children, * otherwise it returns the number of children moved to * the end of the unused list. This may not be the total * number of unused children, because select_parent can * drop the lock and return early due to latency * constraints. */ struct select_data { … }; static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) { … } static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) { … } /** * shrink_dcache_parent - prune dcache * @parent: parent of entries to prune * * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry *parent) { … } EXPORT_SYMBOL(…); static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) { … } static void do_one_tree(struct dentry *dentry) { … } /* * destroy the dentries attached to a superblock on unmounting */ void shrink_dcache_for_umount(struct super_block *sb) { … } static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) { … } /** * d_invalidate - detach submounts, prune dcache, and drop * @dentry: dentry to invalidate (aka detach, prune and drop) */ void d_invalidate(struct dentry *dentry) { … } EXPORT_SYMBOL(…); /** * __d_alloc - allocate a dcache entry * @sb: filesystem it will belong to * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) { … } /** * d_alloc - allocate a dcache entry * @parent: parent of entry to allocate * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) { … } EXPORT_SYMBOL(…); struct dentry *d_alloc_anon(struct super_block *sb) { … } EXPORT_SYMBOL(…); struct dentry *d_alloc_cursor(struct dentry * parent) { … } /** * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) * @sb: the superblock * @name: qstr of the name * * For a filesystem that just pins its dentries in memory and never * performs lookups at all, return an unhashed IS_ROOT dentry. * This is used for pipes, sockets et.al. - the stuff that should * never be anyone's children or parents. Unlike all other * dentries, these will not have RCU delay between dropping the * last reference and freeing them. * * The only user is alloc_file_pseudo() and that's what should * be considered a public interface. Don't use directly. */ struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) { … } struct dentry *d_alloc_name(struct dentry *parent, const char *name) { … } EXPORT_SYMBOL(…); void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) { … } EXPORT_SYMBOL(…); static unsigned d_flags_for_inode(struct inode *inode) { … } static void __d_instantiate(struct dentry *dentry, struct inode *inode) { … } /** * d_instantiate - fill in inode information for a dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ void d_instantiate(struct dentry *entry, struct inode * inode) { … } EXPORT_SYMBOL(…); /* * This should be equivalent to d_instantiate() + unlock_new_inode(), * with lockdep-related part of unlock_new_inode() done before * anything else. Use that instead of open-coding d_instantiate()/ * unlock_new_inode() combinations. */ void d_instantiate_new(struct dentry *entry, struct inode *inode) { … } EXPORT_SYMBOL(…); struct dentry *d_make_root(struct inode *root_inode) { … } EXPORT_SYMBOL(…); static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) { … } /** * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain a dentry for an inode resulting from NFS filehandle conversion or * similar open by handle operations. The returned dentry may be anonymous, * or may have a full name (if the inode was already in the cache). * * When called on a directory inode, we must ensure that the inode only ever * has one dentry. If a dentry is found, that is returned instead of * allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is released. * To make it easier to use in export operations a %NULL or IS_ERR inode may * be passed in and the error will be propagated to the return value, * with a %NULL @inode replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_alias(struct inode *inode) { … } EXPORT_SYMBOL(…); /** * d_obtain_root - find or allocate a dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain an IS_ROOT dentry for the root of a filesystem. * * We must ensure that directory inodes only ever have one dentry. If a * dentry is found, that is returned instead of allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is * released. A %NULL or IS_ERR inode may be passed in and will be the * error will be propagate to the return value, with a %NULL @inode * replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_root(struct inode *inode) { … } EXPORT_SYMBOL(…); /** * d_add_ci - lookup or allocate new dentry with case-exact name * @inode: the inode case-insensitive lookup has found * @dentry: the negative dentry that was passed to the parent's lookup func * @name: the case-exact name to be associated with the returned dentry * * This is to avoid filling the dcache with case-insensitive names to the * same inode, only the actual correct case is stored in the dcache for * case-insensitive filesystems. * * For a case-insensitive lookup match and if the case-exact dentry * already exists in the dcache, use it and return it. * * If no entry exists with the exact case name, allocate new dentry with * the exact case, and return the spliced entry. */ struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, struct qstr *name) { … } EXPORT_SYMBOL(…); /** * d_same_name - compare dentry name with case-exact name * @parent: parent dentry * @dentry: the negative dentry that was passed to the parent's lookup func * @name: the case-exact name to be associated with the returned dentry * * Return: true if names are same, or false */ bool d_same_name(const struct dentry *dentry, const struct dentry *parent, const struct qstr *name) { … } EXPORT_SYMBOL_GPL(…); /* * This is __d_lookup_rcu() when the parent dentry has * DCACHE_OP_COMPARE, which makes things much nastier. */ static noinline struct dentry *__d_lookup_rcu_op_compare( const struct dentry *parent, const struct qstr *name, unsigned *seqp) { … } /** * __d_lookup_rcu - search for a dentry (racy, store-free) * @parent: parent dentry * @name: qstr of name we wish to find * @seqp: returns d_seq value at the point where the dentry was found * Returns: dentry, or NULL * * __d_lookup_rcu is the dcache lookup function for rcu-walk name * resolution (store-free path walking) design described in * Documentation/filesystems/path-lookup.txt. * * This is not to be used outside core vfs. * * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock * held, and rcu_read_lock held. The returned dentry must not be stored into * without taking d_lock and checking d_seq sequence count against @seq * returned here. * * A refcount may be taken on the found dentry with the d_rcu_to_refcount * function. * * Alternatively, __d_lookup_rcu may be called again to look up the child of * the returned dentry, so long as its parent's seqlock is checked after the * child is looked up. Thus, an interlocking stepping of sequence lock checks * is formed, giving integrity down the path walk. * * NOTE! The caller *has* to check the resulting dentry against the sequence * number we've returned before using any of the resulting dentry state! */ struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seqp) { … } /** * d_lookup - search for a dentry * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * d_lookup searches the children of the parent dentry for the name in * question. If the dentry is found its reference count is incremented and the * dentry is returned. The caller must use dput to free the entry when it has * finished using it. %NULL is returned if the dentry does not exist. */ struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) { … } EXPORT_SYMBOL(…); /** * __d_lookup - search for a dentry (racy) * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * __d_lookup is like d_lookup, however it may (rarely) return a * false-negative result due to unrelated rename activity. * * __d_lookup is slightly faster by avoiding rename_lock read seqlock, * however it must be used carefully, eg. with a following d_lookup in * the case of failure. * * __d_lookup callers must be commented. */ struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) { … } /** * d_hash_and_lookup - hash the qstr then search for a dentry * @dir: Directory to search in * @name: qstr of name we wish to find * * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) */ struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) { … } EXPORT_SYMBOL(…); /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ /** * d_delete - delete a dentry * @dentry: The dentry to delete * * Turn the dentry into a negative dentry if possible, otherwise * remove it from the hash queues so it can be deleted later */ void d_delete(struct dentry * dentry) { … } EXPORT_SYMBOL(…); static void __d_rehash(struct dentry *entry) { … } /** * d_rehash - add an entry back to the hash * @entry: dentry to add to the hash * * Adds a dentry to the hash according to its name. */ void d_rehash(struct dentry * entry) { … } EXPORT_SYMBOL(…); static inline unsigned start_dir_add(struct inode *dir) { … } static inline void end_dir_add(struct inode *dir, unsigned int n, wait_queue_head_t *d_wait) { … } static void d_wait_lookup(struct dentry *dentry) { … } struct dentry *d_alloc_parallel(struct dentry *parent, const struct qstr *name, wait_queue_head_t *wq) { … } EXPORT_SYMBOL(…); /* * - Unhash the dentry * - Retrieve and clear the waitqueue head in dentry * - Return the waitqueue head */ static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) { … } void __d_lookup_unhash_wake(struct dentry *dentry) { … } EXPORT_SYMBOL(…); /* inode->i_lock held if inode is non-NULL */ static inline void __d_add(struct dentry *dentry, struct inode *inode) { … } /** * d_add - add dentry to hash queues * @entry: dentry to add * @inode: The inode to attach to this dentry * * This adds the entry to the hash queues and initializes @inode. * The entry was actually filled in earlier during d_alloc(). */ void d_add(struct dentry *entry, struct inode *inode) { … } EXPORT_SYMBOL(…); /** * d_exact_alias - find and hash an exact unhashed alias * @entry: dentry to add * @inode: The inode to go with this dentry * * If an unhashed dentry with the same name/parent and desired * inode already exists, hash and return it. Otherwise, return * NULL. * * Parent directory should be locked. */ struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) { … } EXPORT_SYMBOL(…); static void swap_names(struct dentry *dentry, struct dentry *target) { … } static void copy_name(struct dentry *dentry, struct dentry *target) { … } /* * __d_move - move a dentry * @dentry: entry to move * @target: new dentry * @exchange: exchange the two dentries * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. Caller must hold * rename_lock, the i_mutex of the source and target directories, * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). */ static void __d_move(struct dentry *dentry, struct dentry *target, bool exchange) { … } /* * d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. See the locking * requirements for __d_move. */ void d_move(struct dentry *dentry, struct dentry *target) { … } EXPORT_SYMBOL(…); /* * d_exchange - exchange two dentries * @dentry1: first dentry * @dentry2: second dentry */ void d_exchange(struct dentry *dentry1, struct dentry *dentry2) { … } /** * d_ancestor - search for an ancestor * @p1: ancestor dentry * @p2: child dentry * * Returns the ancestor dentry of p2 which is a child of p1, if p1 is * an ancestor of p2, else NULL. */ struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) { … } /* * This helper attempts to cope with remotely renamed directories * * It assumes that the caller is already holding * dentry->d_parent->d_inode->i_mutex, and rename_lock * * Note: If ever the locking in lock_rename() changes, then please * remember to update this too... */ static int __d_unalias(struct dentry *dentry, struct dentry *alias) { … } /** * d_splice_alias - splice a disconnected dentry into the tree if one exists * @inode: the inode which may have a disconnected dentry * @dentry: a negative dentry which we want to point to the inode. * * If inode is a directory and has an IS_ROOT alias, then d_move that in * place of the given dentry and return it, else simply d_add the inode * to the dentry and return NULL. * * If a non-IS_ROOT directory is found, the filesystem is corrupt, and * we should error out: directories can't have multiple aliases. * * This is needed in the lookup routine of any filesystem that is exportable * (via knfsd) so that we can build dcache paths to directories effectively. * * If a dentry was found and moved, then it is returned. Otherwise NULL * is returned. This matches the expected return value of ->lookup. * * Cluster filesystems may call this function with a negative, hashed dentry. * In that case, we know that the inode will be a regular file, and also this * will only occur during atomic_open. So we need to check for the dentry * being already hashed only in the final case. */ struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) { … } EXPORT_SYMBOL(…); /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ /** * is_subdir - is new dentry a subdirectory of old_dentry * @new_dentry: new dentry * @old_dentry: old dentry * * Returns true if new_dentry is a subdirectory of the parent (at any depth). * Returns false otherwise. * Caller must ensure that "new_dentry" is pinned before calling is_subdir() */ bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) { … } EXPORT_SYMBOL(…); static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) { … } void d_genocide(struct dentry *parent) { … } void d_mark_tmpfile(struct file *file, struct inode *inode) { … } EXPORT_SYMBOL(…); void d_tmpfile(struct file *file, struct inode *inode) { … } EXPORT_SYMBOL(…); /* * Obtain inode number of the parent dentry. */ ino_t d_parent_ino(struct dentry *dentry) { … } EXPORT_SYMBOL(…); static __initdata unsigned long dhash_entries; static int __init set_dhash_entries(char *str) { … } __setup(…); static void __init dcache_init_early(void) { … } static void __init dcache_init(void) { … } /* SLAB cache for __getname() consumers */ struct kmem_cache *names_cachep __ro_after_init; EXPORT_SYMBOL(…); void __init vfs_caches_init_early(void) { … } void __init vfs_caches_init(void) { … }