linux/fs/direct-io.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * fs/direct-io.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * O_DIRECT
 *
 * 04Jul2002	Andrew Morton
 *		Initial version
 * 11Sep2002	[email protected]
 * 		added readv/writev support.
 * 29Oct2002	Andrew Morton
 *		rewrote bio_add_page() support.
 * 30Oct2002	[email protected]
 *		added support for non-aligned IO.
 * 06Nov2002	[email protected]
 *		added asynchronous IO support.
 * 21Jul2003	[email protected]
 *		added IO completion notifier.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/bio.h>
#include <linux/wait.h>
#include <linux/err.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/rwsem.h>
#include <linux/uio.h>
#include <linux/atomic.h>
#include <linux/prefetch.h>

#include "internal.h"

/*
 * How many user pages to map in one call to iov_iter_extract_pages().  This
 * determines the size of a structure in the slab cache
 */
#define DIO_PAGES

/*
 * Flags for dio_complete()
 */
#define DIO_COMPLETE_ASYNC
#define DIO_COMPLETE_INVALIDATE

/*
 * This code generally works in units of "dio_blocks".  A dio_block is
 * somewhere between the hard sector size and the filesystem block size.  it
 * is determined on a per-invocation basis.   When talking to the filesystem
 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
 * to bio_block quantities by shifting left by blkfactor.
 *
 * If blkfactor is zero then the user's request was aligned to the filesystem's
 * blocksize.
 */

/* dio_state only used in the submission path */

struct dio_submit {};

/* dio_state communicated between submission path and end_io */
struct dio {} ____cacheline_aligned_in_smp;

static struct kmem_cache *dio_cache __ro_after_init;

/*
 * How many pages are in the queue?
 */
static inline unsigned dio_pages_present(struct dio_submit *sdio)
{}

/*
 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 */
static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
{}

/*
 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 * buffered inside the dio so that we can call iov_iter_extract_pages()
 * against a decent number of pages, less frequently.  To provide nicer use of
 * the L1 cache.
 */
static inline struct page *dio_get_page(struct dio *dio,
					struct dio_submit *sdio)
{}

static void dio_pin_page(struct dio *dio, struct page *page)
{}

static void dio_unpin_page(struct dio *dio, struct page *page)
{}

/*
 * dio_complete() - called when all DIO BIO I/O has been completed
 *
 * This drops i_dio_count, lets interested parties know that a DIO operation
 * has completed, and calculates the resulting return code for the operation.
 *
 * It lets the filesystem know if it registered an interest earlier via
 * get_block.  Pass the private field of the map buffer_head so that
 * filesystems can use it to hold additional state between get_block calls and
 * dio_complete.
 */
static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
{}

static void dio_aio_complete_work(struct work_struct *work)
{}

static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);

/*
 * Asynchronous IO callback. 
 */
static void dio_bio_end_aio(struct bio *bio)
{}

/*
 * The BIO completion handler simply queues the BIO up for the process-context
 * handler.
 *
 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 */
static void dio_bio_end_io(struct bio *bio)
{}

static inline void
dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
	      struct block_device *bdev,
	      sector_t first_sector, int nr_vecs)
{}

/*
 * In the AIO read case we speculatively dirty the pages before starting IO.
 * During IO completion, any of these pages which happen to have been written
 * back will be redirtied by bio_check_pages_dirty().
 *
 * bios hold a dio reference between submit_bio and ->end_io.
 */
static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
{}

/*
 * Release any resources in case of a failure
 */
static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
{}

/*
 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 * returned once all BIOs have been completed.  This must only be called once
 * all bios have been issued so that dio->refcount can only decrease.  This
 * requires that the caller hold a reference on the dio.
 */
static struct bio *dio_await_one(struct dio *dio)
{}

/*
 * Process one completed BIO.  No locks are held.
 */
static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
{}

/*
 * Wait on and process all in-flight BIOs.  This must only be called once
 * all bios have been issued so that the refcount can only decrease.
 * This just waits for all bios to make it through dio_bio_complete.  IO
 * errors are propagated through dio->io_error and should be propagated via
 * dio_complete().
 */
static void dio_await_completion(struct dio *dio)
{}

/*
 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 * to keep the memory consumption sane we periodically reap any completed BIOs
 * during the BIO generation phase.
 *
 * This also helps to limit the peak amount of pinned userspace memory.
 */
static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
{}

static int dio_set_defer_completion(struct dio *dio)
{}

/*
 * Call into the fs to map some more disk blocks.  We record the current number
 * of available blocks at sdio->blocks_available.  These are in units of the
 * fs blocksize, i_blocksize(inode).
 *
 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 * it uses the passed inode-relative block number as the file offset, as usual.
 *
 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 * has remaining to do.  The fs should not map more than this number of blocks.
 *
 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 * indicate how much contiguous disk space has been made available at
 * bh->b_blocknr.
 *
 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 * This isn't very efficient...
 *
 * In the case of filesystem holes: the fs may return an arbitrarily-large
 * hole by returning an appropriate value in b_size and by clearing
 * buffer_mapped().  However the direct-io code will only process holes one
 * block at a time - it will repeatedly call get_block() as it walks the hole.
 */
static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
			   struct buffer_head *map_bh)
{}

/*
 * There is no bio.  Make one now.
 */
static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
		sector_t start_sector, struct buffer_head *map_bh)
{}

/*
 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 * that was successful then update final_block_in_bio and take a ref against
 * the just-added page.
 *
 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 */
static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
{}
		
/*
 * Put cur_page under IO.  The section of cur_page which is described by
 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 * starts on-disk at cur_page_block.
 *
 * We take a ref against the page here (on behalf of its presence in the bio).
 *
 * The caller of this function is responsible for removing cur_page from the
 * dio, and for dropping the refcount which came from that presence.
 */
static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
		struct buffer_head *map_bh)
{}

/*
 * An autonomous function to put a chunk of a page under deferred IO.
 *
 * The caller doesn't actually know (or care) whether this piece of page is in
 * a BIO, or is under IO or whatever.  We just take care of all possible 
 * situations here.  The separation between the logic of do_direct_IO() and
 * that of submit_page_section() is important for clarity.  Please don't break.
 *
 * The chunk of page starts on-disk at blocknr.
 *
 * We perform deferred IO, by recording the last-submitted page inside our
 * private part of the dio structure.  If possible, we just expand the IO
 * across that page here.
 *
 * If that doesn't work out then we put the old page into the bio and add this
 * page to the dio instead.
 */
static inline int
submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
		    unsigned offset, unsigned len, sector_t blocknr,
		    struct buffer_head *map_bh)
{}

/*
 * If we are not writing the entire block and get_block() allocated
 * the block for us, we need to fill-in the unused portion of the
 * block with zeros. This happens only if user-buffer, fileoffset or
 * io length is not filesystem block-size multiple.
 *
 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 * IO.
 */
static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
		int end, struct buffer_head *map_bh)
{}

/*
 * Walk the user pages, and the file, mapping blocks to disk and generating
 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 * into submit_page_section(), which takes care of the next stage of submission
 *
 * Direct IO against a blockdev is different from a file.  Because we can
 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 * blockdev IO be able to have fine alignment and large sizes.
 *
 * So what we do is to permit the ->get_block function to populate bh.b_size
 * with the size of IO which is permitted at this offset and this i_blkbits.
 *
 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 * fine alignment but still allows this function to work in PAGE_SIZE units.
 */
static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
			struct buffer_head *map_bh)
{}

static inline int drop_refcount(struct dio *dio)
{}

/*
 * This is a library function for use by filesystem drivers.
 *
 * The locking rules are governed by the flags parameter:
 *  - if the flags value contains DIO_LOCKING we use a fancy locking
 *    scheme for dumb filesystems.
 *    For writes this function is called under i_mutex and returns with
 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
 *    taken and dropped again before returning.
 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
 *    internal locking but rather rely on the filesystem to synchronize
 *    direct I/O reads/writes versus each other and truncate.
 *
 * To help with locking against truncate we incremented the i_dio_count
 * counter before starting direct I/O, and decrement it once we are done.
 * Truncate can wait for it to reach zero to provide exclusion.  It is
 * expected that filesystem provide exclusion between new direct I/O
 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
 * but other filesystems need to take care of this on their own.
 *
 * NOTE: if you pass "sdio" to anything by pointer make sure that function
 * is always inlined. Otherwise gcc is unable to split the structure into
 * individual fields and will generate much worse code. This is important
 * for the whole file.
 */
ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
		struct block_device *bdev, struct iov_iter *iter,
		get_block_t get_block, dio_iodone_t end_io,
		int flags)
{}
EXPORT_SYMBOL();

static __init int dio_init(void)
{}
module_init()