linux/security/landlock/fs.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Landlock LSM - Filesystem management and hooks
 *
 * Copyright © 2016-2020 Mickaël Salaün <[email protected]>
 * Copyright © 2018-2020 ANSSI
 * Copyright © 2021-2022 Microsoft Corporation
 * Copyright © 2022 Günther Noack <[email protected]>
 * Copyright © 2023-2024 Google LLC
 */

#include <asm/ioctls.h>
#include <kunit/test.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/compiler_types.h>
#include <linux/dcache.h>
#include <linux/err.h>
#include <linux/falloc.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/lsm_hooks.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/path.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/types.h>
#include <linux/wait_bit.h>
#include <linux/workqueue.h>
#include <uapi/linux/fiemap.h>
#include <uapi/linux/landlock.h>

#include "common.h"
#include "cred.h"
#include "fs.h"
#include "limits.h"
#include "object.h"
#include "ruleset.h"
#include "setup.h"

/* Underlying object management */

static void release_inode(struct landlock_object *const object)
	__releases(object->lock)
{}

static const struct landlock_object_underops landlock_fs_underops =;

/* IOCTL helpers */

/**
 * is_masked_device_ioctl - Determine whether an IOCTL command is always
 * permitted with Landlock for device files.  These commands can not be
 * restricted on device files by enforcing a Landlock policy.
 *
 * @cmd: The IOCTL command that is supposed to be run.
 *
 * By default, any IOCTL on a device file requires the
 * LANDLOCK_ACCESS_FS_IOCTL_DEV right.  However, we blanket-permit some
 * commands, if:
 *
 * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(),
 *    not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl().
 *
 * 2. The command is harmless when invoked on devices.
 *
 * We also permit commands that do not make sense for devices, but where the
 * do_vfs_ioctl() implementation returns a more conventional error code.
 *
 * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl()
 * should be considered for inclusion here.
 *
 * Returns: true if the IOCTL @cmd can not be restricted with Landlock for
 * device files.
 */
static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd)
{}

/*
 * is_masked_device_ioctl_compat - same as the helper above, but checking the
 * "compat" IOCTL commands.
 *
 * The IOCTL commands with special handling in compat-mode should behave the
 * same as their non-compat counterparts.
 */
static __attribute_const__ bool
is_masked_device_ioctl_compat(const unsigned int cmd)
{}

/* Ruleset management */

static struct landlock_object *get_inode_object(struct inode *const inode)
{}

/* All access rights that can be tied to files. */
/* clang-format off */
#define ACCESS_FILE
/* clang-format on */

/*
 * @path: Should have been checked by get_path_from_fd().
 */
int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
			    const struct path *const path,
			    access_mask_t access_rights)
{}

/* Access-control management */

/*
 * The lifetime of the returned rule is tied to @domain.
 *
 * Returns NULL if no rule is found or if @dentry is negative.
 */
static const struct landlock_rule *
find_rule(const struct landlock_ruleset *const domain,
	  const struct dentry *const dentry)
{}

/*
 * Allows access to pseudo filesystems that will never be mountable (e.g.
 * sockfs, pipefs), but can still be reachable through
 * /proc/<pid>/fd/<file-descriptor>
 */
static bool is_nouser_or_private(const struct dentry *dentry)
{}

static access_mask_t
get_raw_handled_fs_accesses(const struct landlock_ruleset *const domain)
{}

static access_mask_t
get_handled_fs_accesses(const struct landlock_ruleset *const domain)
{}

static const struct landlock_ruleset *
get_fs_domain(const struct landlock_ruleset *const domain)
{}

static const struct landlock_ruleset *get_current_fs_domain(void)
{}

/*
 * Check that a destination file hierarchy has more restrictions than a source
 * file hierarchy.  This is only used for link and rename actions.
 *
 * @layer_masks_child2: Optional child masks.
 */
static bool no_more_access(
	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
	const bool child1_is_directory,
	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
	const bool child2_is_directory)
{}

#define NMA_TRUE
#define NMA_FALSE

#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST

static void test_no_more_access(struct kunit *const test)
{}

#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */

#undef NMA_TRUE
#undef NMA_FALSE

/*
 * Removes @layer_masks accesses that are not requested.
 *
 * Returns true if the request is allowed, false otherwise.
 */
static bool
scope_to_request(const access_mask_t access_request,
		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
{}

#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST

static void test_scope_to_request_with_exec_none(struct kunit *const test)
{}

static void test_scope_to_request_with_exec_some(struct kunit *const test)
{}

static void test_scope_to_request_without_access(struct kunit *const test)
{}

#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */

/*
 * Returns true if there is at least one access right different than
 * LANDLOCK_ACCESS_FS_REFER.
 */
static bool
is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
	  const access_mask_t access_request)
{}

#define IE_TRUE
#define IE_FALSE

#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST

static void test_is_eacces_with_none(struct kunit *const test)
{}

static void test_is_eacces_with_refer(struct kunit *const test)
{}

static void test_is_eacces_with_write(struct kunit *const test)
{}

#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */

#undef IE_TRUE
#undef IE_FALSE

/**
 * is_access_to_paths_allowed - Check accesses for requests with a common path
 *
 * @domain: Domain to check against.
 * @path: File hierarchy to walk through.
 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
 *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
 *     requested path for most actions, or the source in case of a refer action
 *     (i.e. rename or link), or the source and destination in case of
 *     RENAME_EXCHANGE.
 * @layer_masks_parent1: Pointer to a matrix of layer masks per access
 *     masks, identifying the layers that forbid a specific access.  Bits from
 *     this matrix can be unset according to the @path walk.  An empty matrix
 *     means that @domain allows all possible Landlock accesses (i.e. not only
 *     those identified by @access_request_parent1).  This matrix can
 *     initially refer to domain layer masks and, when the accesses for the
 *     destination and source are the same, to requested layer masks.
 * @dentry_child1: Dentry to the initial child of the parent1 path.  This
 *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
 * @access_request_parent2: Similar to @access_request_parent1 but for a
 *     request involving a source and a destination.  This refers to the
 *     destination, except in case of RENAME_EXCHANGE where it also refers to
 *     the source.  Must be set to 0 when using a simple path request.
 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
 *     action.  This must be NULL otherwise.
 * @dentry_child2: Dentry to the initial child of the parent2 path.  This
 *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
 *     otherwise.
 *
 * This helper first checks that the destination has a superset of restrictions
 * compared to the source (if any) for a common path.  Because of
 * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
 * checks that the collected accesses and the remaining ones are enough to
 * allow the request.
 *
 * Returns:
 * - true if the access request is granted;
 * - false otherwise.
 */
static bool is_access_to_paths_allowed(
	const struct landlock_ruleset *const domain,
	const struct path *const path,
	const access_mask_t access_request_parent1,
	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
	const struct dentry *const dentry_child1,
	const access_mask_t access_request_parent2,
	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
	const struct dentry *const dentry_child2)
{}

static int check_access_path(const struct landlock_ruleset *const domain,
			     const struct path *const path,
			     access_mask_t access_request)
{}

static int current_check_access_path(const struct path *const path,
				     const access_mask_t access_request)
{}

static access_mask_t get_mode_access(const umode_t mode)
{}

static access_mask_t maybe_remove(const struct dentry *const dentry)
{}

/**
 * collect_domain_accesses - Walk through a file path and collect accesses
 *
 * @domain: Domain to check against.
 * @mnt_root: Last directory to check.
 * @dir: Directory to start the walk from.
 * @layer_masks_dom: Where to store the collected accesses.
 *
 * This helper is useful to begin a path walk from the @dir directory to a
 * @mnt_root directory used as a mount point.  This mount point is the common
 * ancestor between the source and the destination of a renamed and linked
 * file.  While walking from @dir to @mnt_root, we record all the domain's
 * allowed accesses in @layer_masks_dom.
 *
 * This is similar to is_access_to_paths_allowed() but much simpler because it
 * only handles walking on the same mount point and only checks one set of
 * accesses.
 *
 * Returns:
 * - true if all the domain access rights are allowed for @dir;
 * - false if the walk reached @mnt_root.
 */
static bool collect_domain_accesses(
	const struct landlock_ruleset *const domain,
	const struct dentry *const mnt_root, struct dentry *dir,
	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
{}

/**
 * current_check_refer_path - Check if a rename or link action is allowed
 *
 * @old_dentry: File or directory requested to be moved or linked.
 * @new_dir: Destination parent directory.
 * @new_dentry: Destination file or directory.
 * @removable: Sets to true if it is a rename operation.
 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
 *
 * Because of its unprivileged constraints, Landlock relies on file hierarchies
 * (and not only inodes) to tie access rights to files.  Being able to link or
 * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
 * file (i.e. creating a new reference to an inode) can have an impact on the
 * actions allowed for a set of files if it would change its parent directory
 * (i.e. reparenting).
 *
 * To avoid trivial access right bypasses, Landlock first checks if the file or
 * directory requested to be moved would gain new access rights inherited from
 * its new hierarchy.  Before returning any error, Landlock then checks that
 * the parent source hierarchy and the destination hierarchy would allow the
 * link or rename action.  If it is not the case, an error with EACCES is
 * returned to inform user space that there is no way to remove or create the
 * requested source file type.  If it should be allowed but the new inherited
 * access rights would be greater than the source access rights, then the
 * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
 * user space to abort the whole operation if there is no way to do it, or to
 * manually copy the source to the destination if this remains allowed, e.g.
 * because file creation is allowed on the destination directory but not direct
 * linking.
 *
 * To achieve this goal, the kernel needs to compare two file hierarchies: the
 * one identifying the source file or directory (including itself), and the
 * destination one.  This can be seen as a multilayer partial ordering problem.
 * The kernel walks through these paths and collects in a matrix the access
 * rights that are denied per layer.  These matrices are then compared to see
 * if the destination one has more (or the same) restrictions as the source
 * one.  If this is the case, the requested action will not return EXDEV, which
 * doesn't mean the action is allowed.  The parent hierarchy of the source
 * (i.e. parent directory), and the destination hierarchy must also be checked
 * to verify that they explicitly allow such action (i.e.  referencing,
 * creation and potentially removal rights).  The kernel implementation is then
 * required to rely on potentially four matrices of access rights: one for the
 * source file or directory (i.e. the child), a potentially other one for the
 * other source/destination (in case of RENAME_EXCHANGE), one for the source
 * parent hierarchy and a last one for the destination hierarchy.  These
 * ephemeral matrices take some space on the stack, which limits the number of
 * layers to a deemed reasonable number: 16.
 *
 * Returns:
 * - 0 if access is allowed;
 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
 * - -EACCES if file removal or creation is denied.
 */
static int current_check_refer_path(struct dentry *const old_dentry,
				    const struct path *const new_dir,
				    struct dentry *const new_dentry,
				    const bool removable, const bool exchange)
{}

/* Inode hooks */

static void hook_inode_free_security(struct inode *const inode)
{}

/* Super-block hooks */

/*
 * Release the inodes used in a security policy.
 *
 * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
 */
static void hook_sb_delete(struct super_block *const sb)
{}

/*
 * Because a Landlock security policy is defined according to the filesystem
 * topology (i.e. the mount namespace), changing it may grant access to files
 * not previously allowed.
 *
 * To make it simple, deny any filesystem topology modification by landlocked
 * processes.  Non-landlocked processes may still change the namespace of a
 * landlocked process, but this kind of threat must be handled by a system-wide
 * access-control security policy.
 *
 * This could be lifted in the future if Landlock can safely handle mount
 * namespace updates requested by a landlocked process.  Indeed, we could
 * update the current domain (which is currently read-only) by taking into
 * account the accesses of the source and the destination of a new mount point.
 * However, it would also require to make all the child domains dynamically
 * inherit these new constraints.  Anyway, for backward compatibility reasons,
 * a dedicated user space option would be required (e.g. as a ruleset flag).
 */
static int hook_sb_mount(const char *const dev_name,
			 const struct path *const path, const char *const type,
			 const unsigned long flags, void *const data)
{}

static int hook_move_mount(const struct path *const from_path,
			   const struct path *const to_path)
{}

/*
 * Removing a mount point may reveal a previously hidden file hierarchy, which
 * may then grant access to files, which may have previously been forbidden.
 */
static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
{}

static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
{}

/*
 * pivot_root(2), like mount(2), changes the current mount namespace.  It must
 * then be forbidden for a landlocked process.
 *
 * However, chroot(2) may be allowed because it only changes the relative root
 * directory of the current process.  Moreover, it can be used to restrict the
 * view of the filesystem.
 */
static int hook_sb_pivotroot(const struct path *const old_path,
			     const struct path *const new_path)
{}

/* Path hooks */

static int hook_path_link(struct dentry *const old_dentry,
			  const struct path *const new_dir,
			  struct dentry *const new_dentry)
{}

static int hook_path_rename(const struct path *const old_dir,
			    struct dentry *const old_dentry,
			    const struct path *const new_dir,
			    struct dentry *const new_dentry,
			    const unsigned int flags)
{}

static int hook_path_mkdir(const struct path *const dir,
			   struct dentry *const dentry, const umode_t mode)
{}

static int hook_path_mknod(const struct path *const dir,
			   struct dentry *const dentry, const umode_t mode,
			   const unsigned int dev)
{}

static int hook_path_symlink(const struct path *const dir,
			     struct dentry *const dentry,
			     const char *const old_name)
{}

static int hook_path_unlink(const struct path *const dir,
			    struct dentry *const dentry)
{}

static int hook_path_rmdir(const struct path *const dir,
			   struct dentry *const dentry)
{}

static int hook_path_truncate(const struct path *const path)
{}

/* File hooks */

/**
 * get_required_file_open_access - Get access needed to open a file
 *
 * @file: File being opened.
 *
 * Returns the access rights that are required for opening the given file,
 * depending on the file type and open mode.
 */
static access_mask_t
get_required_file_open_access(const struct file *const file)
{}

static int hook_file_alloc_security(struct file *const file)
{}

static bool is_device(const struct file *const file)
{}

static int hook_file_open(struct file *const file)
{}

static int hook_file_truncate(struct file *const file)
{}

static int hook_file_ioctl(struct file *file, unsigned int cmd,
			   unsigned long arg)
{}

static int hook_file_ioctl_compat(struct file *file, unsigned int cmd,
				  unsigned long arg)
{}

static struct security_hook_list landlock_hooks[] __ro_after_init =;

__init void landlock_add_fs_hooks(void)
{}

#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST

/* clang-format off */
static struct kunit_case test_cases[] =;
/* clang-format on */

static struct kunit_suite test_suite =;

kunit_test_suite();

#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */