linux/block/blk-crypto-profile.c

// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2019 Google LLC
 */

/**
 * DOC: blk-crypto profiles
 *
 * 'struct blk_crypto_profile' contains all generic inline encryption-related
 * state for a particular inline encryption device.  blk_crypto_profile serves
 * as the way that drivers for inline encryption hardware expose their crypto
 * capabilities and certain functions (e.g., functions to program and evict
 * keys) to upper layers.  Device drivers that want to support inline encryption
 * construct a crypto profile, then associate it with the disk's request_queue.
 *
 * If the device has keyslots, then its blk_crypto_profile also handles managing
 * these keyslots in a device-independent way, using the driver-provided
 * functions to program and evict keys as needed.  This includes keeping track
 * of which key and how many I/O requests are using each keyslot, getting
 * keyslots for I/O requests, and handling key eviction requests.
 *
 * For more information, see Documentation/block/inline-encryption.rst.
 */

#define pr_fmt(fmt)

#include <linux/blk-crypto-profile.h>
#include <linux/device.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
#include "blk-crypto-internal.h"

struct blk_crypto_keyslot {};

static inline void blk_crypto_hw_enter(struct blk_crypto_profile *profile)
{}

static inline void blk_crypto_hw_exit(struct blk_crypto_profile *profile)
{}

/**
 * blk_crypto_profile_init() - Initialize a blk_crypto_profile
 * @profile: the blk_crypto_profile to initialize
 * @num_slots: the number of keyslots
 *
 * Storage drivers must call this when starting to set up a blk_crypto_profile,
 * before filling in additional fields.
 *
 * Return: 0 on success, or else a negative error code.
 */
int blk_crypto_profile_init(struct blk_crypto_profile *profile,
			    unsigned int num_slots)
{}
EXPORT_SYMBOL_GPL();

static void blk_crypto_profile_destroy_callback(void *profile)
{}

/**
 * devm_blk_crypto_profile_init() - Resource-managed blk_crypto_profile_init()
 * @dev: the device which owns the blk_crypto_profile
 * @profile: the blk_crypto_profile to initialize
 * @num_slots: the number of keyslots
 *
 * Like blk_crypto_profile_init(), but causes blk_crypto_profile_destroy() to be
 * called automatically on driver detach.
 *
 * Return: 0 on success, or else a negative error code.
 */
int devm_blk_crypto_profile_init(struct device *dev,
				 struct blk_crypto_profile *profile,
				 unsigned int num_slots)
{}
EXPORT_SYMBOL_GPL();

static inline struct hlist_head *
blk_crypto_hash_bucket_for_key(struct blk_crypto_profile *profile,
			       const struct blk_crypto_key *key)
{}

static void
blk_crypto_remove_slot_from_lru_list(struct blk_crypto_keyslot *slot)
{}

static struct blk_crypto_keyslot *
blk_crypto_find_keyslot(struct blk_crypto_profile *profile,
			const struct blk_crypto_key *key)
{}

static struct blk_crypto_keyslot *
blk_crypto_find_and_grab_keyslot(struct blk_crypto_profile *profile,
				 const struct blk_crypto_key *key)
{}

/**
 * blk_crypto_keyslot_index() - Get the index of a keyslot
 * @slot: a keyslot that blk_crypto_get_keyslot() returned
 *
 * Return: the 0-based index of the keyslot within the device's keyslots.
 */
unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot)
{}
EXPORT_SYMBOL_GPL();

/**
 * blk_crypto_get_keyslot() - Get a keyslot for a key, if needed.
 * @profile: the crypto profile of the device the key will be used on
 * @key: the key that will be used
 * @slot_ptr: If a keyslot is allocated, an opaque pointer to the keyslot struct
 *	      will be stored here.  blk_crypto_put_keyslot() must be called
 *	      later to release it.  Otherwise, NULL will be stored here.
 *
 * If the device has keyslots, this gets a keyslot that's been programmed with
 * the specified key.  If the key is already in a slot, this reuses it;
 * otherwise this waits for a slot to become idle and programs the key into it.
 *
 * Context: Process context. Takes and releases profile->lock.
 * Return: BLK_STS_OK on success, meaning that either a keyslot was allocated or
 *	   one wasn't needed; or a blk_status_t error on failure.
 */
blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile,
				    const struct blk_crypto_key *key,
				    struct blk_crypto_keyslot **slot_ptr)
{}

/**
 * blk_crypto_put_keyslot() - Release a reference to a keyslot
 * @slot: The keyslot to release the reference of
 *
 * Context: Any context.
 */
void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot)
{}

/**
 * __blk_crypto_cfg_supported() - Check whether the given crypto profile
 *				  supports the given crypto configuration.
 * @profile: the crypto profile to check
 * @cfg: the crypto configuration to check for
 *
 * Return: %true if @profile supports the given @cfg.
 */
bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile,
				const struct blk_crypto_config *cfg)
{}

/*
 * This is an internal function that evicts a key from an inline encryption
 * device that can be either a real device or the blk-crypto-fallback "device".
 * It is used only by blk_crypto_evict_key(); see that function for details.
 */
int __blk_crypto_evict_key(struct blk_crypto_profile *profile,
			   const struct blk_crypto_key *key)
{}

/**
 * blk_crypto_reprogram_all_keys() - Re-program all keyslots.
 * @profile: The crypto profile
 *
 * Re-program all keyslots that are supposed to have a key programmed.  This is
 * intended only for use by drivers for hardware that loses its keys on reset.
 *
 * Context: Process context. Takes and releases profile->lock.
 */
void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile)
{}
EXPORT_SYMBOL_GPL();

void blk_crypto_profile_destroy(struct blk_crypto_profile *profile)
{}
EXPORT_SYMBOL_GPL();

bool blk_crypto_register(struct blk_crypto_profile *profile,
			 struct request_queue *q)
{}
EXPORT_SYMBOL_GPL();

/**
 * blk_crypto_intersect_capabilities() - restrict supported crypto capabilities
 *					 by child device
 * @parent: the crypto profile for the parent device
 * @child: the crypto profile for the child device, or NULL
 *
 * This clears all crypto capabilities in @parent that aren't set in @child.  If
 * @child is NULL, then this clears all parent capabilities.
 *
 * Only use this when setting up the crypto profile for a layered device, before
 * it's been exposed yet.
 */
void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent,
				       const struct blk_crypto_profile *child)
{}
EXPORT_SYMBOL_GPL();

/**
 * blk_crypto_has_capabilities() - Check whether @target supports at least all
 *				   the crypto capabilities that @reference does.
 * @target: the target profile
 * @reference: the reference profile
 *
 * Return: %true if @target supports all the crypto capabilities of @reference.
 */
bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target,
				 const struct blk_crypto_profile *reference)
{}
EXPORT_SYMBOL_GPL();

/**
 * blk_crypto_update_capabilities() - Update the capabilities of a crypto
 *				      profile to match those of another crypto
 *				      profile.
 * @dst: The crypto profile whose capabilities to update.
 * @src: The crypto profile whose capabilities this function will update @dst's
 *	 capabilities to.
 *
 * Blk-crypto requires that crypto capabilities that were
 * advertised when a bio was created continue to be supported by the
 * device until that bio is ended. This is turn means that a device cannot
 * shrink its advertised crypto capabilities without any explicit
 * synchronization with upper layers. So if there's no such explicit
 * synchronization, @src must support all the crypto capabilities that
 * @dst does (i.e. we need blk_crypto_has_capabilities(@src, @dst)).
 *
 * Note also that as long as the crypto capabilities are being expanded, the
 * order of updates becoming visible is not important because it's alright
 * for blk-crypto to see stale values - they only cause blk-crypto to
 * believe that a crypto capability isn't supported when it actually is (which
 * might result in blk-crypto-fallback being used if available, or the bio being
 * failed).
 */
void blk_crypto_update_capabilities(struct blk_crypto_profile *dst,
				    const struct blk_crypto_profile *src)
{}
EXPORT_SYMBOL_GPL();