linux/lib/idr.c

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/xarray.h>

/**
 * idr_alloc_u32() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @nextid: Pointer to an ID.
 * @max: The maximum ID to allocate (inclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @max.
 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
 * is exclusive.  The new ID is assigned to @nextid before the pointer
 * is inserted into the IDR, so if @nextid points into the object pointed
 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.  If an error occurred,
 * @nextid is unchanged.
 */
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
			unsigned long max, gfp_t gfp)
{}
EXPORT_SYMBOL_GPL();

/**
 * idr_alloc() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @start and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{}
EXPORT_SYMBOL_GPL();

/**
 * idr_alloc_cyclic() - Allocate an ID cyclically.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @start and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 * The search for an unused ID will start at the last ID allocated and will
 * wrap around to @start if no free IDs are found before reaching @end.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * idr_remove() - Remove an ID from the IDR.
 * @idr: IDR handle.
 * @id: Pointer ID.
 *
 * Removes this ID from the IDR.  If the ID was not previously in the IDR,
 * this function returns %NULL.
 *
 * Since this function modifies the IDR, the caller should provide their
 * own locking to ensure that concurrent modification of the same IDR is
 * not possible.
 *
 * Return: The pointer formerly associated with this ID.
 */
void *idr_remove(struct idr *idr, unsigned long id)
{}
EXPORT_SYMBOL_GPL();

/**
 * idr_find() - Return pointer for given ID.
 * @idr: IDR handle.
 * @id: Pointer ID.
 *
 * Looks up the pointer associated with this ID.  A %NULL pointer may
 * indicate that @id is not allocated or that the %NULL pointer was
 * associated with this ID.
 *
 * This function can be called under rcu_read_lock(), given that the leaf
 * pointers lifetimes are correctly managed.
 *
 * Return: The pointer associated with this ID.
 */
void *idr_find(const struct idr *idr, unsigned long id)
{}
EXPORT_SYMBOL_GPL();

/**
 * idr_for_each() - Iterate through all stored pointers.
 * @idr: IDR handle.
 * @fn: Function to be called for each pointer.
 * @data: Data passed to callback function.
 *
 * The callback function will be called for each entry in @idr, passing
 * the ID, the entry and @data.
 *
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
 *
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
 */
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
{}
EXPORT_SYMBOL();

/**
 * idr_get_next_ul() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
{}
EXPORT_SYMBOL();

/**
 * idr_get_next() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next(struct idr *idr, int *nextid)
{}
EXPORT_SYMBOL();

/**
 * idr_replace() - replace pointer for given ID.
 * @idr: IDR handle.
 * @ptr: New pointer to associate with the ID.
 * @id: ID to change.
 *
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
 *
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 * found.  %-EINVAL indicates that @ptr was not valid.
 */
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
{}
EXPORT_SYMBOL();

/**
 * DOC: IDA description
 *
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
 * To free an ID, call ida_free().
 *
 * ida_destroy() can be used to dispose of an IDA without needing to
 * free the individual IDs in it.  You can use ida_is_empty() to find
 * out whether the IDA has any IDs currently allocated.
 *
 * The IDA handles its own locking.  It is safe to call any of the IDA
 * functions without synchronisation in your code.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
 */

/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the XArray to store bitmaps in
 * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
 * have been set.
 *
 * I considered telling the XArray that each slot is an order-10 node
 * and indexing by bit number, but the XArray can't allow a single multi-index
 * entry in the head, which would significantly increase memory consumption
 * for the IDA.  So instead we divide the index by the number of bits in the
 * leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we store the bits
 * as a value entry.  Value entries never have the XA_FREE_MARK cleared
 * because we can always convert them into a bitmap entry.
 *
 * It would be possible to optimise further; once we've run out of a
 * single 128-byte bitmap, we currently switch to a 576-byte node, put
 * the 128-byte bitmap in the first entry and then start allocating extra
 * 128-byte entries.  We could instead use the 512 bytes of the node's
 * data as a bitmap before moving to that scheme.  I do not believe this
 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
 * users of the IDA and almost none of them use more than 1024 entries.
 * Those that do use more than the 8192 IDs that the 512 bytes would
 * provide.
 *
 * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

/**
 * ida_alloc_range() - Allocate an unused ID.
 * @ida: IDA handle.
 * @min: Lowest ID to allocate.
 * @max: Highest ID to allocate.
 * @gfp: Memory allocation flags.
 *
 * Allocate an ID between @min and @max, inclusive.  The allocated ID will
 * not exceed %INT_MAX, even if @max is larger.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
 * or %-ENOSPC if there are no free IDs.
 */
int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
			gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * ida_free() - Release an allocated ID.
 * @ida: IDA handle.
 * @id: Previously allocated ID.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 */
void ida_free(struct ida *ida, unsigned int id)
{}
EXPORT_SYMBOL();

/**
 * ida_destroy() - Free all IDs.
 * @ida: IDA handle.
 *
 * Calling this function frees all IDs and releases all resources used
 * by an IDA.  When this call returns, the IDA is empty and can be reused
 * or freed.  If the IDA is already empty, there is no need to call this
 * function.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 */
void ida_destroy(struct ida *ida)
{}
EXPORT_SYMBOL();

#ifndef __KERNEL__
extern void xa_dump_index(unsigned long index, unsigned int shift);
#define IDA_CHUNK_SHIFT

static void ida_dump_entry(void *entry, unsigned long index)
{
	unsigned long i;

	if (!entry)
		return;

	if (xa_is_node(entry)) {
		struct xa_node *node = xa_to_node(entry);
		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
			XA_CHUNK_SHIFT;

		xa_dump_index(index * IDA_BITMAP_BITS, shift);
		xa_dump_node(node);
		for (i = 0; i < XA_CHUNK_SIZE; i++)
			ida_dump_entry(node->slots[i],
					index | (i << node->shift));
	} else if (xa_is_value(entry)) {
		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
	} else {
		struct ida_bitmap *bitmap = entry;

		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
		pr_cont("bitmap: %p data", bitmap);
		for (i = 0; i < IDA_BITMAP_LONGS; i++)
			pr_cont(" %lx", bitmap->bitmap[i]);
		pr_cont("\n");
	}
}

static void ida_dump(struct ida *ida)
{
	struct xarray *xa = &ida->xa;
	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
				xa->xa_flags >> ROOT_TAG_SHIFT);
	ida_dump_entry(xa->xa_head, 0);
}
#endif