linux/lib/radix-tree.c

// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2001 Momchil Velikov
 * Portions Copyright (C) 2001 Christoph Hellwig
 * Copyright (C) 2005 SGI, Christoph Lameter
 * Copyright (C) 2006 Nick Piggin
 * Copyright (C) 2012 Konstantin Khlebnikov
 * Copyright (C) 2016 Intel, Matthew Wilcox
 * Copyright (C) 2016 Intel, Ross Zwisler
 */

#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/percpu.h>
#include <linux/preempt.h>		/* in_interrupt() */
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/xarray.h>

#include "radix-tree.h"

/*
 * Radix tree node cache.
 */
struct kmem_cache *radix_tree_node_cachep;

/*
 * The radix tree is variable-height, so an insert operation not only has
 * to build the branch to its corresponding item, it also has to build the
 * branch to existing items if the size has to be increased (by
 * radix_tree_extend).
 *
 * The worst case is a zero height tree with just a single item at index 0,
 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
 * Hence:
 */
#define RADIX_TREE_PRELOAD_SIZE

/*
 * The IDR does not have to be as high as the radix tree since it uses
 * signed integers, not unsigned longs.
 */
#define IDR_INDEX_BITS
#define IDR_MAX_PATH
#define IDR_PRELOAD_SIZE

/*
 * Per-cpu pool of preloaded nodes
 */
DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) =;
EXPORT_PER_CPU_SYMBOL_GPL();

static inline struct radix_tree_node *entry_to_node(void *ptr)
{}

static inline void *node_to_entry(void *ptr)
{}

#define RADIX_TREE_RETRY

static inline unsigned long
get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
{}

static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
			struct radix_tree_node **nodep, unsigned long index)
{}

static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
{}

static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
		int offset)
{}

static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
		int offset)
{}

static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
		int offset)
{}

static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
{}

static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
{}

static inline void root_tag_clear_all(struct radix_tree_root *root)
{}

static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
{}

static inline unsigned root_tags_get(const struct radix_tree_root *root)
{}

static inline bool is_idr(const struct radix_tree_root *root)
{}

/*
 * Returns 1 if any slot in the node has this tag set.
 * Otherwise returns 0.
 */
static inline int any_tag_set(const struct radix_tree_node *node,
							unsigned int tag)
{}

static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
{}

/**
 * radix_tree_find_next_bit - find the next set bit in a memory region
 *
 * @node: where to begin the search
 * @tag: the tag index
 * @offset: the bitnumber to start searching at
 *
 * Unrollable variant of find_next_bit() for constant size arrays.
 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 * Returns next bit offset, or size if nothing found.
 */
static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
			 unsigned long offset)
{}

static unsigned int iter_offset(const struct radix_tree_iter *iter)
{}

/*
 * The maximum index which can be stored in a radix tree
 */
static inline unsigned long shift_maxindex(unsigned int shift)
{}

static inline unsigned long node_maxindex(const struct radix_tree_node *node)
{}

static unsigned long next_index(unsigned long index,
				const struct radix_tree_node *node,
				unsigned long offset)
{}

/*
 * This assumes that the caller has performed appropriate preallocation, and
 * that the caller has pinned this thread of control to the current CPU.
 */
static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
			struct radix_tree_root *root,
			unsigned int shift, unsigned int offset,
			unsigned int count, unsigned int nr_values)
{}

void radix_tree_node_rcu_free(struct rcu_head *head)
{}

static inline void
radix_tree_node_free(struct radix_tree_node *node)
{}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
{}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
int radix_tree_preload(gfp_t gfp_mask)
{}
EXPORT_SYMBOL();

/*
 * The same as above function, except we don't guarantee preloading happens.
 * We do it, if we decide it helps. On success, return zero with preemption
 * disabled. On error, return -ENOMEM with preemption not disabled.
 */
int radix_tree_maybe_preload(gfp_t gfp_mask)
{}
EXPORT_SYMBOL();

static unsigned radix_tree_load_root(const struct radix_tree_root *root,
		struct radix_tree_node **nodep, unsigned long *maxindex)
{}

/*
 *	Extend a radix tree so it can store key @index.
 */
static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
				unsigned long index, unsigned int shift)
{}

/**
 *	radix_tree_shrink    -    shrink radix tree to minimum height
 *	@root:		radix tree root
 */
static inline bool radix_tree_shrink(struct radix_tree_root *root)
{}

static bool delete_node(struct radix_tree_root *root,
			struct radix_tree_node *node)
{}

/**
 *	__radix_tree_create	-	create a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Create, if necessary, and return the node and slot for an item
 *	at position @index in the radix tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->xa_head is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 *
 *	Returns -ENOMEM, or 0 for success.
 */
static int __radix_tree_create(struct radix_tree_root *root,
		unsigned long index, struct radix_tree_node **nodep,
		void __rcu ***slotp)
{}

/*
 * Free any nodes below this node.  The tree is presumed to not need
 * shrinking, and any user data in the tree is presumed to not need a
 * destructor called on it.  If we need to add a destructor, we can
 * add that functionality later.  Note that we may not clear tags or
 * slots from the tree as an RCU walker may still have a pointer into
 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 * but we'll still have to clear those in rcu_free.
 */
static void radix_tree_free_nodes(struct radix_tree_node *node)
{}

static inline int insert_entries(struct radix_tree_node *node,
		void __rcu **slot, void *item)
{}

/**
 *	radix_tree_insert    -    insert into a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@item:		item to insert
 *
 *	Insert an item into the radix tree at position @index.
 */
int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
			void *item)
{}
EXPORT_SYMBOL();

/**
 *	__radix_tree_lookup	-	lookup an item in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Lookup and return the item at position @index in the radix
 *	tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->xa_head is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 */
void *__radix_tree_lookup(const struct radix_tree_root *root,
			  unsigned long index, struct radix_tree_node **nodep,
			  void __rcu ***slotp)
{}

/**
 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Returns:  the slot corresponding to the position @index in the
 *	radix tree @root. This is useful for update-if-exists operations.
 *
 *	This function can be called under rcu_read_lock iff the slot is not
 *	modified by radix_tree_replace_slot, otherwise it must be called
 *	exclusive from other writers. Any dereference of the slot must be done
 *	using radix_tree_deref_slot.
 */
void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
				unsigned long index)
{}
EXPORT_SYMBOL();

/**
 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Lookup the item at the position @index in the radix tree @root.
 *
 *	This function can be called under rcu_read_lock, however the caller
 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 *	them safely). No RCU barriers are required to access or modify the
 *	returned item, however.
 */
void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
{}
EXPORT_SYMBOL();

static void replace_slot(void __rcu **slot, void *item,
		struct radix_tree_node *node, int count, int values)
{}

static bool node_tag_get(const struct radix_tree_root *root,
				const struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{}

/*
 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 * free, don't adjust the count, even if it's transitioning between NULL and
 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 * have empty bits, but it only stores NULL in slots when they're being
 * deleted.
 */
static int calculate_count(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot,
				void *item, void *old)
{}

/**
 * __radix_tree_replace		- replace item in a slot
 * @root:		radix tree root
 * @node:		pointer to tree node
 * @slot:		pointer to slot in @node
 * @item:		new item to store in the slot.
 *
 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 * across slot lookup and replacement.
 */
void __radix_tree_replace(struct radix_tree_root *root,
			  struct radix_tree_node *node,
			  void __rcu **slot, void *item)
{}

/**
 * radix_tree_replace_slot	- replace item in a slot
 * @root:	radix tree root
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_lookup_slot() and
 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 * across slot lookup and replacement.
 *
 * NOTE: This cannot be used to switch between non-entries (empty slots),
 * regular entries, and value entries, as that requires accounting
 * inside the radix tree node. When switching from one type of entry or
 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 * radix_tree_iter_replace().
 */
void radix_tree_replace_slot(struct radix_tree_root *root,
			     void __rcu **slot, void *item)
{}
EXPORT_SYMBOL();

/**
 * radix_tree_iter_replace - replace item in a slot
 * @root:	radix tree root
 * @iter:	iterator state
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_for_each_slot().
 * Caller must hold tree write locked.
 */
void radix_tree_iter_replace(struct radix_tree_root *root,
				const struct radix_tree_iter *iter,
				void __rcu **slot, void *item)
{}

static void node_tag_set(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{}

/**
 *	radix_tree_tag_set - set a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  From
 *	the root all the way down to the leaf node.
 *
 *	Returns the address of the tagged item.  Setting a tag on a not-present
 *	item is a bug.
 */
void *radix_tree_tag_set(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{}
EXPORT_SYMBOL();

static void node_tag_clear(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{}

/**
 *	radix_tree_tag_clear - clear a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  If this causes
 *	the leaf node to have no tags set then clear the tag in the
 *	next-to-leaf node, etc.
 *
 *	Returns the address of the tagged item on success, else NULL.  ie:
 *	has the same return value and semantics as radix_tree_lookup().
 */
void *radix_tree_tag_clear(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{}
EXPORT_SYMBOL();

/**
  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  * @root: radix tree root
  * @iter: iterator state
  * @tag: tag to clear
  */
void radix_tree_iter_tag_clear(struct radix_tree_root *root,
			const struct radix_tree_iter *iter, unsigned int tag)
{}

/**
 * radix_tree_tag_get - get a tag on a radix tree node
 * @root:		radix tree root
 * @index:		index key
 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
 *
 * Return values:
 *
 *  0: tag not present or not set
 *  1: tag set
 *
 * Note that the return value of this function may not be relied on, even if
 * the RCU lock is held, unless tag modification and node deletion are excluded
 * from concurrency.
 */
int radix_tree_tag_get(const struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{}
EXPORT_SYMBOL();

/* Construct iter->tags bit-mask from node->tags[tag] array */
static void set_iter_tags(struct radix_tree_iter *iter,
				struct radix_tree_node *node, unsigned offset,
				unsigned tag)
{}

void __rcu **radix_tree_iter_resume(void __rcu **slot,
					struct radix_tree_iter *iter)
{}
EXPORT_SYMBOL();

/**
 * radix_tree_next_chunk - find next chunk of slots for iteration
 *
 * @root:	radix tree root
 * @iter:	iterator state
 * @flags:	RADIX_TREE_ITER_* flags and tag index
 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 */
void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
			     struct radix_tree_iter *iter, unsigned flags)
{}
EXPORT_SYMBOL();

/**
 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *
 *	Performs an index-ascending scan of the tree for present items.  Places
 *	them at *@results and returns the number of items which were placed at
 *	*@results.
 *
 *	The implementation is naive.
 *
 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 *	rcu_read_lock. In this case, rather than the returned results being
 *	an atomic snapshot of the tree at a single point in time, the
 *	semantics of an RCU protected gang lookup are as though multiple
 *	radix_tree_lookups have been issued in individual locks, and results
 *	stored in 'results'.
 */
unsigned int
radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
			unsigned long first_index, unsigned int max_items)
{}
EXPORT_SYMBOL();

/**
 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
 *	                             based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the items at *@results and
 *	returns the number of items which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
		unsigned long first_index, unsigned int max_items,
		unsigned int tag)
{}
EXPORT_SYMBOL();

/**
 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
 *					  radix tree based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the slots at *@results and
 *	returns the number of slots which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
		void __rcu ***results, unsigned long first_index,
		unsigned int max_items, unsigned int tag)
{}
EXPORT_SYMBOL();

static bool __radix_tree_delete(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot)
{}

/**
 * radix_tree_iter_delete - delete the entry at this iterator position
 * @root: radix tree root
 * @iter: iterator state
 * @slot: pointer to slot
 *
 * Delete the entry at the position currently pointed to by the iterator.
 * This may result in the current node being freed; if it is, the iterator
 * is advanced so that it will not reference the freed memory.  This
 * function may be called without any locking if there are no other threads
 * which can access this tree.
 */
void radix_tree_iter_delete(struct radix_tree_root *root,
				struct radix_tree_iter *iter, void __rcu **slot)
{}
EXPORT_SYMBOL();

/**
 * radix_tree_delete_item - delete an item from a radix tree
 * @root: radix tree root
 * @index: index key
 * @item: expected item
 *
 * Remove @item at @index from the radix tree rooted at @root.
 *
 * Return: the deleted entry, or %NULL if it was not present
 * or the entry at the given @index was not @item.
 */
void *radix_tree_delete_item(struct radix_tree_root *root,
			     unsigned long index, void *item)
{}
EXPORT_SYMBOL();

/**
 * radix_tree_delete - delete an entry from a radix tree
 * @root: radix tree root
 * @index: index key
 *
 * Remove the entry at @index from the radix tree rooted at @root.
 *
 * Return: The deleted entry, or %NULL if it was not present.
 */
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{}
EXPORT_SYMBOL();

/**
 *	radix_tree_tagged - test whether any items in the tree are tagged
 *	@root:		radix tree root
 *	@tag:		tag to test
 */
int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
{}
EXPORT_SYMBOL();

/**
 * idr_preload - preload for idr_alloc()
 * @gfp_mask: allocation mask to use for preloading
 *
 * Preallocate memory to use for the next call to idr_alloc().  This function
 * returns with preemption disabled.  It will be enabled by idr_preload_end().
 */
void idr_preload(gfp_t gfp_mask)
{}
EXPORT_SYMBOL();

void __rcu **idr_get_free(struct radix_tree_root *root,
			      struct radix_tree_iter *iter, gfp_t gfp,
			      unsigned long max)
{}

/**
 * idr_destroy - release all internal memory from an IDR
 * @idr: idr handle
 *
 * After this function is called, the IDR is empty, and may be reused or
 * the data structure containing it may be freed.
 *
 * A typical clean-up sequence for objects stored in an idr tree will use
 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 * free the memory used to keep track of those objects.
 */
void idr_destroy(struct idr *idr)
{}
EXPORT_SYMBOL();

static void
radix_tree_node_ctor(void *arg)
{}

static int radix_tree_cpu_dead(unsigned int cpu)
{}

void __init radix_tree_init(void)
{}