linux/lib/refcount.c

// SPDX-License-Identifier: GPL-2.0
/*
 * Out-of-line refcount functions.
 */

#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/spinlock.h>
#include <linux/bug.h>

#define REFCOUNT_WARN(str)

void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t)
{}
EXPORT_SYMBOL();

/**
 * refcount_dec_if_one - decrement a refcount if it is 1
 * @r: the refcount
 *
 * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the
 * success thereof.
 *
 * Like all decrement operations, it provides release memory order and provides
 * a control dependency.
 *
 * It can be used like a try-delete operator; this explicit case is provided
 * and not cmpxchg in generic, because that would allow implementing unsafe
 * operations.
 *
 * Return: true if the resulting refcount is 0, false otherwise
 */
bool refcount_dec_if_one(refcount_t *r)
{}
EXPORT_SYMBOL();

/**
 * refcount_dec_not_one - decrement a refcount if it is not 1
 * @r: the refcount
 *
 * No atomic_t counterpart, it decrements unless the value is 1, in which case
 * it will return false.
 *
 * Was often done like: atomic_add_unless(&var, -1, 1)
 *
 * Return: true if the decrement operation was successful, false otherwise
 */
bool refcount_dec_not_one(refcount_t *r)
{}
EXPORT_SYMBOL();

/**
 * refcount_dec_and_mutex_lock - return holding mutex if able to decrement
 *                               refcount to 0
 * @r: the refcount
 * @lock: the mutex to be locked
 *
 * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail
 * to decrement when saturated at REFCOUNT_SATURATED.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Return: true and hold mutex if able to decrement refcount to 0, false
 *         otherwise
 */
bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)
{}
EXPORT_SYMBOL();

/**
 * refcount_dec_and_lock - return holding spinlock if able to decrement
 *                         refcount to 0
 * @r: the refcount
 * @lock: the spinlock to be locked
 *
 * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to
 * decrement when saturated at REFCOUNT_SATURATED.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Return: true and hold spinlock if able to decrement refcount to 0, false
 *         otherwise
 */
bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)
{}
EXPORT_SYMBOL();

/**
 * refcount_dec_and_lock_irqsave - return holding spinlock with disabled
 *                                 interrupts if able to decrement refcount to 0
 * @r: the refcount
 * @lock: the spinlock to be locked
 * @flags: saved IRQ-flags if the is acquired
 *
 * Same as refcount_dec_and_lock() above except that the spinlock is acquired
 * with disabled interrupts.
 *
 * Return: true and hold spinlock if able to decrement refcount to 0, false
 *         otherwise
 */
bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock,
				   unsigned long *flags)
{}
EXPORT_SYMBOL();