// SPDX-License-Identifier: GPL-2.0 #include <linux/ptrace.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/export.h> #include <asm/syscall.h> static int collect_syscall(struct task_struct *target, struct syscall_info *info) { … } /** * task_current_syscall - Discover what a blocked task is doing. * @target: thread to examine * @info: structure with the following fields: * .sp - filled with user stack pointer * .data.nr - filled with system call number or -1 * .data.args - filled with @maxargs system call arguments * .data.instruction_pointer - filled with user PC * * If @target is blocked in a system call, returns zero with @info.data.nr * set to the call's number and @info.data.args filled in with its * arguments. Registers not used for system call arguments may not be available * and it is not kosher to use &struct user_regset calls while the system * call is still in progress. Note we may get this result if @target * has finished its system call but not yet returned to user mode, such * as when it's stopped for signal handling or syscall exit tracing. * * If @target is blocked in the kernel during a fault or exception, * returns zero with *@info.data.nr set to -1 and does not fill in * @info.data.args. If so, it's now safe to examine @target using * &struct user_regset get() calls as long as we're sure @target won't return * to user mode. * * Returns -%EAGAIN if @target does not remain blocked. */ int task_current_syscall(struct task_struct *target, struct syscall_info *info) { … }