/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SUSPEND_H #define _LINUX_SUSPEND_H #include <linux/swap.h> #include <linux/notifier.h> #include <linux/init.h> #include <linux/pm.h> #include <linux/mm.h> #include <linux/freezer.h> #include <asm/errno.h> #ifdef CONFIG_VT extern void pm_set_vt_switch(int); #else static inline void pm_set_vt_switch(int do_switch) { } #endif #ifdef CONFIG_VT_CONSOLE_SLEEP extern void pm_prepare_console(void); extern void pm_restore_console(void); #else static inline void pm_prepare_console(void) { } static inline void pm_restore_console(void) { } #endif suspend_state_t; #define PM_SUSPEND_ON … #define PM_SUSPEND_TO_IDLE … #define PM_SUSPEND_STANDBY … #define PM_SUSPEND_MEM … #define PM_SUSPEND_MIN … #define PM_SUSPEND_MAX … /** * struct platform_suspend_ops - Callbacks for managing platform dependent * system sleep states. * * @valid: Callback to determine if given system sleep state is supported by * the platform. * Valid (ie. supported) states are advertised in /sys/power/state. Note * that it still may be impossible to enter given system sleep state if the * conditions aren't right. * There is the %suspend_valid_only_mem function available that can be * assigned to this if the platform only supports mem sleep. * * @begin: Initialise a transition to given system sleep state. * @begin() is executed right prior to suspending devices. The information * conveyed to the platform code by @begin() should be disregarded by it as * soon as @end() is executed. If @begin() fails (ie. returns nonzero), * @prepare(), @enter() and @finish() will not be called by the PM core. * This callback is optional. However, if it is implemented, the argument * passed to @enter() is redundant and should be ignored. * * @prepare: Prepare the platform for entering the system sleep state indicated * by @begin(). * @prepare() is called right after devices have been suspended (ie. the * appropriate .suspend() method has been executed for each device) and * before device drivers' late suspend callbacks are executed. It returns * 0 on success or a negative error code otherwise, in which case the * system cannot enter the desired sleep state (@prepare_late(), @enter(), * and @wake() will not be called in that case). * * @prepare_late: Finish preparing the platform for entering the system sleep * state indicated by @begin(). * @prepare_late is called before disabling nonboot CPUs and after * device drivers' late suspend callbacks have been executed. It returns * 0 on success or a negative error code otherwise, in which case the * system cannot enter the desired sleep state (@enter() will not be * executed). * * @enter: Enter the system sleep state indicated by @begin() or represented by * the argument if @begin() is not implemented. * This callback is mandatory. It returns 0 on success or a negative * error code otherwise, in which case the system cannot enter the desired * sleep state. * * @wake: Called when the system has just left a sleep state, right after * the nonboot CPUs have been enabled and before device drivers' early * resume callbacks are executed. * This callback is optional, but should be implemented by the platforms * that implement @prepare_late(). If implemented, it is always called * after @prepare_late and @enter(), even if one of them fails. * * @finish: Finish wake-up of the platform. * @finish is called right prior to calling device drivers' regular suspend * callbacks. * This callback is optional, but should be implemented by the platforms * that implement @prepare(). If implemented, it is always called after * @enter() and @wake(), even if any of them fails. It is executed after * a failing @prepare. * * @suspend_again: Returns whether the system should suspend again (true) or * not (false). If the platform wants to poll sensors or execute some * code during suspended without invoking userspace and most of devices, * suspend_again callback is the place assuming that periodic-wakeup or * alarm-wakeup is already setup. This allows to execute some codes while * being kept suspended in the view of userland and devices. * * @end: Called by the PM core right after resuming devices, to indicate to * the platform that the system has returned to the working state or * the transition to the sleep state has been aborted. * This callback is optional, but should be implemented by the platforms * that implement @begin(). Accordingly, platforms implementing @begin() * should also provide a @end() which cleans up transitions aborted before * @enter(). * * @recover: Recover the platform from a suspend failure. * Called by the PM core if the suspending of devices fails. * This callback is optional and should only be implemented by platforms * which require special recovery actions in that situation. */ struct platform_suspend_ops { … }; struct platform_s2idle_ops { … }; #ifdef CONFIG_SUSPEND extern suspend_state_t pm_suspend_target_state; extern suspend_state_t mem_sleep_current; extern suspend_state_t mem_sleep_default; /** * suspend_set_ops - set platform dependent suspend operations * @ops: The new suspend operations to set. */ extern void suspend_set_ops(const struct platform_suspend_ops *ops); extern int suspend_valid_only_mem(suspend_state_t state); extern unsigned int pm_suspend_global_flags; #define PM_SUSPEND_FLAG_FW_SUSPEND … #define PM_SUSPEND_FLAG_FW_RESUME … #define PM_SUSPEND_FLAG_NO_PLATFORM … static inline void pm_suspend_clear_flags(void) { … } static inline void pm_set_suspend_via_firmware(void) { … } static inline void pm_set_resume_via_firmware(void) { … } static inline void pm_set_suspend_no_platform(void) { … } /** * pm_suspend_via_firmware - Check if platform firmware will suspend the system. * * To be called during system-wide power management transitions to sleep states * or during the subsequent system-wide transitions back to the working state. * * Return 'true' if the platform firmware is going to be invoked at the end of * the system-wide power management transition (to a sleep state) in progress in * order to complete it, or if the platform firmware has been invoked in order * to complete the last (or preceding) transition of the system to a sleep * state. * * This matters if the caller needs or wants to carry out some special actions * depending on whether or not control will be passed to the platform firmware * subsequently (for example, the device may need to be reset before letting the * platform firmware manipulate it, which is not necessary when the platform * firmware is not going to be invoked) or when such special actions may have * been carried out during the preceding transition of the system to a sleep * state (as they may need to be taken into account). */ static inline bool pm_suspend_via_firmware(void) { … } /** * pm_resume_via_firmware - Check if platform firmware has woken up the system. * * To be called during system-wide power management transitions from sleep * states. * * Return 'true' if the platform firmware has passed control to the kernel at * the beginning of the system-wide power management transition in progress, so * the event that woke up the system from sleep has been handled by the platform * firmware. */ static inline bool pm_resume_via_firmware(void) { … } /** * pm_suspend_no_platform - Check if platform may change device power states. * * To be called during system-wide power management transitions to sleep states * or during the subsequent system-wide transitions back to the working state. * * Return 'true' if the power states of devices remain under full control of the * kernel throughout the system-wide suspend and resume cycle in progress (that * is, if a device is put into a certain power state during suspend, it can be * expected to remain in that state during resume). */ static inline bool pm_suspend_no_platform(void) { … } /* Suspend-to-idle state machnine. */ enum s2idle_states { … }; extern enum s2idle_states __read_mostly s2idle_state; static inline bool idle_should_enter_s2idle(void) { … } extern bool pm_suspend_default_s2idle(void); extern void __init pm_states_init(void); extern void s2idle_set_ops(const struct platform_s2idle_ops *ops); extern void s2idle_wake(void); /** * arch_suspend_disable_irqs - disable IRQs for suspend * * Disables IRQs (in the default case). This is a weak symbol in the common * code and thus allows architectures to override it if more needs to be * done. Not called for suspend to disk. */ extern void arch_suspend_disable_irqs(void); /** * arch_suspend_enable_irqs - enable IRQs after suspend * * Enables IRQs (in the default case). This is a weak symbol in the common * code and thus allows architectures to override it if more needs to be * done. Not called for suspend to disk. */ extern void arch_suspend_enable_irqs(void); extern int pm_suspend(suspend_state_t state); extern bool sync_on_suspend_enabled; #else /* !CONFIG_SUSPEND */ #define suspend_valid_only_mem … #define pm_suspend_target_state … static inline void pm_suspend_clear_flags(void) {} static inline void pm_set_suspend_via_firmware(void) {} static inline void pm_set_resume_via_firmware(void) {} static inline bool pm_suspend_via_firmware(void) { return false; } static inline bool pm_resume_via_firmware(void) { return false; } static inline bool pm_suspend_no_platform(void) { return false; } static inline bool pm_suspend_default_s2idle(void) { return false; } static inline void suspend_set_ops(const struct platform_suspend_ops *ops) {} static inline int pm_suspend(suspend_state_t state) { return -ENOSYS; } static inline bool sync_on_suspend_enabled(void) { return true; } static inline bool idle_should_enter_s2idle(void) { return false; } static inline void __init pm_states_init(void) {} static inline void s2idle_set_ops(const struct platform_s2idle_ops *ops) {} static inline void s2idle_wake(void) {} #endif /* !CONFIG_SUSPEND */ /* struct pbe is used for creating lists of pages that should be restored * atomically during the resume from disk, because the page frames they have * occupied before the suspend are in use. */ struct pbe { … }; /** * struct platform_hibernation_ops - hibernation platform support * * The methods in this structure allow a platform to carry out special * operations required by it during a hibernation transition. * * All the methods below, except for @recover(), must be implemented. * * @begin: Tell the platform driver that we're starting hibernation. * Called right after shrinking memory and before freezing devices. * * @end: Called by the PM core right after resuming devices, to indicate to * the platform that the system has returned to the working state. * * @pre_snapshot: Prepare the platform for creating the hibernation image. * Called right after devices have been frozen and before the nonboot * CPUs are disabled (runs with IRQs on). * * @finish: Restore the previous state of the platform after the hibernation * image has been created *or* put the platform into the normal operation * mode after the hibernation (the same method is executed in both cases). * Called right after the nonboot CPUs have been enabled and before * thawing devices (runs with IRQs on). * * @prepare: Prepare the platform for entering the low power state. * Called right after the hibernation image has been saved and before * devices are prepared for entering the low power state. * * @enter: Put the system into the low power state after the hibernation image * has been saved to disk. * Called after the nonboot CPUs have been disabled and all of the low * level devices have been shut down (runs with IRQs off). * * @leave: Perform the first stage of the cleanup after the system sleep state * indicated by @set_target() has been left. * Called right after the control has been passed from the boot kernel to * the image kernel, before the nonboot CPUs are enabled and before devices * are resumed. Executed with interrupts disabled. * * @pre_restore: Prepare system for the restoration from a hibernation image. * Called right after devices have been frozen and before the nonboot * CPUs are disabled (runs with IRQs on). * * @restore_cleanup: Clean up after a failing image restoration. * Called right after the nonboot CPUs have been enabled and before * thawing devices (runs with IRQs on). * * @recover: Recover the platform from a failure to suspend devices. * Called by the PM core if the suspending of devices during hibernation * fails. This callback is optional and should only be implemented by * platforms which require special recovery actions in that situation. */ struct platform_hibernation_ops { … }; #ifdef CONFIG_HIBERNATION /* kernel/power/snapshot.c */ extern void register_nosave_region(unsigned long b, unsigned long e); extern int swsusp_page_is_forbidden(struct page *); extern void swsusp_set_page_free(struct page *); extern void swsusp_unset_page_free(struct page *); extern unsigned long get_safe_page(gfp_t gfp_mask); extern asmlinkage int swsusp_arch_suspend(void); extern asmlinkage int swsusp_arch_resume(void); extern u32 swsusp_hardware_signature; extern void hibernation_set_ops(const struct platform_hibernation_ops *ops); extern int hibernate(void); extern bool system_entering_hibernation(void); extern bool hibernation_available(void); asmlinkage int swsusp_save(void); extern struct pbe *restore_pblist; int pfn_is_nosave(unsigned long pfn); int hibernate_quiet_exec(int (*func)(void *data), void *data); int hibernate_resume_nonboot_cpu_disable(void); int arch_hibernation_header_save(void *addr, unsigned int max_size); int arch_hibernation_header_restore(void *addr); #else /* CONFIG_HIBERNATION */ static inline void register_nosave_region(unsigned long b, unsigned long e) {} static inline int swsusp_page_is_forbidden(struct page *p) { return 0; } static inline void swsusp_set_page_free(struct page *p) {} static inline void swsusp_unset_page_free(struct page *p) {} static inline void hibernation_set_ops(const struct platform_hibernation_ops *ops) {} static inline int hibernate(void) { return -ENOSYS; } static inline bool system_entering_hibernation(void) { return false; } static inline bool hibernation_available(void) { return false; } static inline int hibernate_quiet_exec(int (*func)(void *data), void *data) { return -ENOTSUPP; } #endif /* CONFIG_HIBERNATION */ int arch_resume_nosmt(void); #ifdef CONFIG_HIBERNATION_SNAPSHOT_DEV int is_hibernate_resume_dev(dev_t dev); #else static inline int is_hibernate_resume_dev(dev_t dev) { return 0; } #endif /* Hibernation and suspend events */ #define PM_HIBERNATION_PREPARE … #define PM_POST_HIBERNATION … #define PM_SUSPEND_PREPARE … #define PM_POST_SUSPEND … #define PM_RESTORE_PREPARE … #define PM_POST_RESTORE … extern struct mutex system_transition_mutex; #ifdef CONFIG_PM_SLEEP void save_processor_state(void); void restore_processor_state(void); /* kernel/power/main.c */ extern int register_pm_notifier(struct notifier_block *nb); extern int unregister_pm_notifier(struct notifier_block *nb); extern void ksys_sync_helper(void); extern void pm_report_hw_sleep_time(u64 t); extern void pm_report_max_hw_sleep(u64 t); #define pm_notifier(fn, pri) … /* drivers/base/power/wakeup.c */ extern bool events_check_enabled; static inline bool pm_suspended_storage(void) { … } extern bool pm_wakeup_pending(void); extern void pm_system_wakeup(void); extern void pm_system_cancel_wakeup(void); extern void pm_wakeup_clear(unsigned int irq_number); extern void pm_system_irq_wakeup(unsigned int irq_number); extern unsigned int pm_wakeup_irq(void); extern bool pm_get_wakeup_count(unsigned int *count, bool block); extern bool pm_save_wakeup_count(unsigned int count); extern void pm_wakep_autosleep_enabled(bool set); extern void pm_print_active_wakeup_sources(void); extern unsigned int lock_system_sleep(void); extern void unlock_system_sleep(unsigned int); #else /* !CONFIG_PM_SLEEP */ static inline int register_pm_notifier(struct notifier_block *nb) { return 0; } static inline int unregister_pm_notifier(struct notifier_block *nb) { return 0; } static inline void pm_report_hw_sleep_time(u64 t) {}; static inline void pm_report_max_hw_sleep(u64 t) {}; static inline void ksys_sync_helper(void) {} #define pm_notifier … static inline bool pm_suspended_storage(void) { return false; } static inline bool pm_wakeup_pending(void) { return false; } static inline void pm_system_wakeup(void) {} static inline void pm_wakeup_clear(bool reset) {} static inline void pm_system_irq_wakeup(unsigned int irq_number) {} static inline unsigned int lock_system_sleep(void) { return 0; } static inline void unlock_system_sleep(unsigned int flags) {} #endif /* !CONFIG_PM_SLEEP */ #ifdef CONFIG_PM_SLEEP_DEBUG extern bool pm_print_times_enabled; extern bool pm_debug_messages_on; extern bool pm_debug_messages_should_print(void); static inline int pm_dyn_debug_messages_on(void) { … } #ifndef pr_fmt #define pr_fmt … #endif #define __pm_pr_dbg(fmt, ...) … #define __pm_deferred_pr_dbg(fmt, ...) … #else #define pm_print_times_enabled … #define pm_debug_messages_on … #include <linux/printk.h> #define __pm_pr_dbg … #define __pm_deferred_pr_dbg … #endif /** * pm_pr_dbg - print pm sleep debug messages * * If pm_debug_messages_on is enabled and the system is entering/leaving * suspend, print message. * If pm_debug_messages_on is disabled and CONFIG_DYNAMIC_DEBUG is enabled, * print message only from instances explicitly enabled on dynamic debug's * control. * If pm_debug_messages_on is disabled and CONFIG_DYNAMIC_DEBUG is disabled, * don't print message. */ #define pm_pr_dbg(fmt, ...) … #define pm_deferred_pr_dbg(fmt, ...) … #ifdef CONFIG_PM_AUTOSLEEP /* kernel/power/autosleep.c */ void queue_up_suspend_work(void); #else /* !CONFIG_PM_AUTOSLEEP */ static inline void queue_up_suspend_work(void) {} #endif /* !CONFIG_PM_AUTOSLEEP */ enum suspend_stat_step { … }; void dpm_save_failed_dev(const char *name); void dpm_save_failed_step(enum suspend_stat_step step); #endif /* _LINUX_SUSPEND_H */