/* * Copyright (C) 2014 Red Hat * Copyright (C) 2014 Intel Corp. * Copyright (C) 2018 Intel Corp. * Copyright (c) 2020, The Linux Foundation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Rob Clark <[email protected]> * Daniel Vetter <[email protected]> */ #include <drm/drm_atomic_uapi.h> #include <drm/drm_atomic.h> #include <drm/drm_framebuffer.h> #include <drm/drm_print.h> #include <drm/drm_drv.h> #include <drm/drm_writeback.h> #include <drm/drm_vblank.h> #include <linux/dma-fence.h> #include <linux/uaccess.h> #include <linux/sync_file.h> #include <linux/file.h> #include "drm_crtc_internal.h" /** * DOC: overview * * This file contains the marshalling and demarshalling glue for the atomic UAPI * in all its forms: The monster ATOMIC IOCTL itself, code for GET_PROPERTY and * SET_PROPERTY IOCTLs. Plus interface functions for compatibility helpers and * drivers which have special needs to construct their own atomic updates, e.g. * for load detect or similar. */ /** * drm_atomic_set_mode_for_crtc - set mode for CRTC * @state: the CRTC whose incoming state to update * @mode: kernel-internal mode to use for the CRTC, or NULL to disable * * Set a mode (originating from the kernel) on the desired CRTC state and update * the enable property. * * RETURNS: * Zero on success, error code on failure. Cannot return -EDEADLK. */ int drm_atomic_set_mode_for_crtc(struct drm_crtc_state *state, const struct drm_display_mode *mode) { … } EXPORT_SYMBOL(…); /** * drm_atomic_set_mode_prop_for_crtc - set mode for CRTC * @state: the CRTC whose incoming state to update * @blob: pointer to blob property to use for mode * * Set a mode (originating from a blob property) on the desired CRTC state. * This function will take a reference on the blob property for the CRTC state, * and release the reference held on the state's existing mode property, if any * was set. * * RETURNS: * Zero on success, error code on failure. Cannot return -EDEADLK. */ int drm_atomic_set_mode_prop_for_crtc(struct drm_crtc_state *state, struct drm_property_blob *blob) { … } EXPORT_SYMBOL(…); /** * drm_atomic_set_crtc_for_plane - set CRTC for plane * @plane_state: the plane whose incoming state to update * @crtc: CRTC to use for the plane * * Changing the assigned CRTC for a plane requires us to grab the lock and state * for the new CRTC, as needed. This function takes care of all these details * besides updating the pointer in the state object itself. * * Returns: * 0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK * then the w/w mutex code has detected a deadlock and the entire atomic * sequence must be restarted. All other errors are fatal. */ int drm_atomic_set_crtc_for_plane(struct drm_plane_state *plane_state, struct drm_crtc *crtc) { … } EXPORT_SYMBOL(…); /** * drm_atomic_set_fb_for_plane - set framebuffer for plane * @plane_state: atomic state object for the plane * @fb: fb to use for the plane * * Changing the assigned framebuffer for a plane requires us to grab a reference * to the new fb and drop the reference to the old fb, if there is one. This * function takes care of all these details besides updating the pointer in the * state object itself. */ void drm_atomic_set_fb_for_plane(struct drm_plane_state *plane_state, struct drm_framebuffer *fb) { … } EXPORT_SYMBOL(…); /** * drm_atomic_set_crtc_for_connector - set CRTC for connector * @conn_state: atomic state object for the connector * @crtc: CRTC to use for the connector * * Changing the assigned CRTC for a connector requires us to grab the lock and * state for the new CRTC, as needed. This function takes care of all these * details besides updating the pointer in the state object itself. * * Returns: * 0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK * then the w/w mutex code has detected a deadlock and the entire atomic * sequence must be restarted. All other errors are fatal. */ int drm_atomic_set_crtc_for_connector(struct drm_connector_state *conn_state, struct drm_crtc *crtc) { … } EXPORT_SYMBOL(…); static void set_out_fence_for_crtc(struct drm_atomic_state *state, struct drm_crtc *crtc, s32 __user *fence_ptr) { … } static s32 __user *get_out_fence_for_crtc(struct drm_atomic_state *state, struct drm_crtc *crtc) { … } static int set_out_fence_for_connector(struct drm_atomic_state *state, struct drm_connector *connector, s32 __user *fence_ptr) { … } static s32 __user *get_out_fence_for_connector(struct drm_atomic_state *state, struct drm_connector *connector) { … } static int drm_atomic_crtc_set_property(struct drm_crtc *crtc, struct drm_crtc_state *state, struct drm_property *property, uint64_t val) { … } static int drm_atomic_crtc_get_property(struct drm_crtc *crtc, const struct drm_crtc_state *state, struct drm_property *property, uint64_t *val) { … } static int drm_atomic_plane_set_property(struct drm_plane *plane, struct drm_plane_state *state, struct drm_file *file_priv, struct drm_property *property, uint64_t val) { … } static int drm_atomic_plane_get_property(struct drm_plane *plane, const struct drm_plane_state *state, struct drm_property *property, uint64_t *val) { … } static int drm_atomic_set_writeback_fb_for_connector( struct drm_connector_state *conn_state, struct drm_framebuffer *fb) { … } static int drm_atomic_connector_set_property(struct drm_connector *connector, struct drm_connector_state *state, struct drm_file *file_priv, struct drm_property *property, uint64_t val) { … } static int drm_atomic_connector_get_property(struct drm_connector *connector, const struct drm_connector_state *state, struct drm_property *property, uint64_t *val) { … } int drm_atomic_get_property(struct drm_mode_object *obj, struct drm_property *property, uint64_t *val) { … } /* * The big monster ioctl */ static struct drm_pending_vblank_event *create_vblank_event( struct drm_crtc *crtc, uint64_t user_data) { … } int drm_atomic_connector_commit_dpms(struct drm_atomic_state *state, struct drm_connector *connector, int mode) { … } static int drm_atomic_check_prop_changes(int ret, uint64_t old_val, uint64_t prop_value, struct drm_property *prop) { … } int drm_atomic_set_property(struct drm_atomic_state *state, struct drm_file *file_priv, struct drm_mode_object *obj, struct drm_property *prop, u64 prop_value, bool async_flip) { … } /** * DOC: explicit fencing properties * * Explicit fencing allows userspace to control the buffer synchronization * between devices. A Fence or a group of fences are transferred to/from * userspace using Sync File fds and there are two DRM properties for that. * IN_FENCE_FD on each DRM Plane to send fences to the kernel and * OUT_FENCE_PTR on each DRM CRTC to receive fences from the kernel. * * As a contrast, with implicit fencing the kernel keeps track of any * ongoing rendering, and automatically ensures that the atomic update waits * for any pending rendering to complete. This is usually tracked in &struct * dma_resv which can also contain mandatory kernel fences. Implicit syncing * is how Linux traditionally worked (e.g. DRI2/3 on X.org), whereas explicit * fencing is what Android wants. * * "IN_FENCE_FD”: * Use this property to pass a fence that DRM should wait on before * proceeding with the Atomic Commit request and show the framebuffer for * the plane on the screen. The fence can be either a normal fence or a * merged one, the sync_file framework will handle both cases and use a * fence_array if a merged fence is received. Passing -1 here means no * fences to wait on. * * If the Atomic Commit request has the DRM_MODE_ATOMIC_TEST_ONLY flag * it will only check if the Sync File is a valid one. * * On the driver side the fence is stored on the @fence parameter of * &struct drm_plane_state. Drivers which also support implicit fencing * should extract the implicit fence using drm_gem_plane_helper_prepare_fb(), * to make sure there's consistent behaviour between drivers in precedence * of implicit vs. explicit fencing. * * "OUT_FENCE_PTR”: * Use this property to pass a file descriptor pointer to DRM. Once the * Atomic Commit request call returns OUT_FENCE_PTR will be filled with * the file descriptor number of a Sync File. This Sync File contains the * CRTC fence that will be signaled when all framebuffers present on the * Atomic Commit * request for that given CRTC are scanned out on the * screen. * * The Atomic Commit request fails if a invalid pointer is passed. If the * Atomic Commit request fails for any other reason the out fence fd * returned will be -1. On a Atomic Commit with the * DRM_MODE_ATOMIC_TEST_ONLY flag the out fence will also be set to -1. * * Note that out-fences don't have a special interface to drivers and are * internally represented by a &struct drm_pending_vblank_event in struct * &drm_crtc_state, which is also used by the nonblocking atomic commit * helpers and for the DRM event handling for existing userspace. */ struct drm_out_fence_state { … }; static int setup_out_fence(struct drm_out_fence_state *fence_state, struct dma_fence *fence) { … } static int prepare_signaling(struct drm_device *dev, struct drm_atomic_state *state, struct drm_mode_atomic *arg, struct drm_file *file_priv, struct drm_out_fence_state **fence_state, unsigned int *num_fences) { … } static void complete_signaling(struct drm_device *dev, struct drm_atomic_state *state, struct drm_out_fence_state *fence_state, unsigned int num_fences, bool install_fds) { … } static void set_async_flip(struct drm_atomic_state *state) { … } int drm_mode_atomic_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { … }