linux/drivers/base/dd.c

// SPDX-License-Identifier: GPL-2.0
/*
 * drivers/base/dd.c - The core device/driver interactions.
 *
 * This file contains the (sometimes tricky) code that controls the
 * interactions between devices and drivers, which primarily includes
 * driver binding and unbinding.
 *
 * All of this code used to exist in drivers/base/bus.c, but was
 * relocated to here in the name of compartmentalization (since it wasn't
 * strictly code just for the 'struct bus_type'.
 *
 * Copyright (c) 2002-5 Patrick Mochel
 * Copyright (c) 2002-3 Open Source Development Labs
 * Copyright (c) 2007-2009 Greg Kroah-Hartman <[email protected]>
 * Copyright (c) 2007-2009 Novell Inc.
 */

#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/dma-map-ops.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/async.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/devinfo.h>
#include <linux/slab.h>

#include "base.h"
#include "power/power.h"

/*
 * Deferred Probe infrastructure.
 *
 * Sometimes driver probe order matters, but the kernel doesn't always have
 * dependency information which means some drivers will get probed before a
 * resource it depends on is available.  For example, an SDHCI driver may
 * first need a GPIO line from an i2c GPIO controller before it can be
 * initialized.  If a required resource is not available yet, a driver can
 * request probing to be deferred by returning -EPROBE_DEFER from its probe hook
 *
 * Deferred probe maintains two lists of devices, a pending list and an active
 * list.  A driver returning -EPROBE_DEFER causes the device to be added to the
 * pending list.  A successful driver probe will trigger moving all devices
 * from the pending to the active list so that the workqueue will eventually
 * retry them.
 *
 * The deferred_probe_mutex must be held any time the deferred_probe_*_list
 * of the (struct device*)->p->deferred_probe pointers are manipulated
 */
static DEFINE_MUTEX(deferred_probe_mutex);
static LIST_HEAD(deferred_probe_pending_list);
static LIST_HEAD(deferred_probe_active_list);
static atomic_t deferred_trigger_count =;
static bool initcalls_done;

/* Save the async probe drivers' name from kernel cmdline */
#define ASYNC_DRV_NAMES_MAX_LEN
static char async_probe_drv_names[ASYNC_DRV_NAMES_MAX_LEN];
static bool async_probe_default;

/*
 * In some cases, like suspend to RAM or hibernation, It might be reasonable
 * to prohibit probing of devices as it could be unsafe.
 * Once defer_all_probes is true all drivers probes will be forcibly deferred.
 */
static bool defer_all_probes;

static void __device_set_deferred_probe_reason(const struct device *dev, char *reason)
{}

/*
 * deferred_probe_work_func() - Retry probing devices in the active list.
 */
static void deferred_probe_work_func(struct work_struct *work)
{}
static DECLARE_WORK(deferred_probe_work, deferred_probe_work_func);

void driver_deferred_probe_add(struct device *dev)
{}

void driver_deferred_probe_del(struct device *dev)
{}

static bool driver_deferred_probe_enable;
/**
 * driver_deferred_probe_trigger() - Kick off re-probing deferred devices
 *
 * This functions moves all devices from the pending list to the active
 * list and schedules the deferred probe workqueue to process them.  It
 * should be called anytime a driver is successfully bound to a device.
 *
 * Note, there is a race condition in multi-threaded probe. In the case where
 * more than one device is probing at the same time, it is possible for one
 * probe to complete successfully while another is about to defer. If the second
 * depends on the first, then it will get put on the pending list after the
 * trigger event has already occurred and will be stuck there.
 *
 * The atomic 'deferred_trigger_count' is used to determine if a successful
 * trigger has occurred in the midst of probing a driver. If the trigger count
 * changes in the midst of a probe, then deferred processing should be triggered
 * again.
 */
void driver_deferred_probe_trigger(void)
{}

/**
 * device_block_probing() - Block/defer device's probes
 *
 *	It will disable probing of devices and defer their probes instead.
 */
void device_block_probing(void)
{}

/**
 * device_unblock_probing() - Unblock/enable device's probes
 *
 *	It will restore normal behavior and trigger re-probing of deferred
 * devices.
 */
void device_unblock_probing(void)
{}

/**
 * device_set_deferred_probe_reason() - Set defer probe reason message for device
 * @dev: the pointer to the struct device
 * @vaf: the pointer to va_format structure with message
 */
void device_set_deferred_probe_reason(const struct device *dev, struct va_format *vaf)
{}

/*
 * deferred_devs_show() - Show the devices in the deferred probe pending list.
 */
static int deferred_devs_show(struct seq_file *s, void *data)
{}
DEFINE_SHOW_ATTRIBUTE();

#ifdef CONFIG_MODULES
static int driver_deferred_probe_timeout =;
#else
static int driver_deferred_probe_timeout;
#endif

static int __init deferred_probe_timeout_setup(char *str)
{}
__setup();

/**
 * driver_deferred_probe_check_state() - Check deferred probe state
 * @dev: device to check
 *
 * Return:
 * * -ENODEV if initcalls have completed and modules are disabled.
 * * -ETIMEDOUT if the deferred probe timeout was set and has expired
 *   and modules are enabled.
 * * -EPROBE_DEFER in other cases.
 *
 * Drivers or subsystems can opt-in to calling this function instead of directly
 * returning -EPROBE_DEFER.
 */
int driver_deferred_probe_check_state(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

static void deferred_probe_timeout_work_func(struct work_struct *work)
{}
static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, deferred_probe_timeout_work_func);

void deferred_probe_extend_timeout(void)
{}

/**
 * deferred_probe_initcall() - Enable probing of deferred devices
 *
 * We don't want to get in the way when the bulk of drivers are getting probed.
 * Instead, this initcall makes sure that deferred probing is delayed until
 * late_initcall time.
 */
static int deferred_probe_initcall(void)
{}
late_initcall(deferred_probe_initcall);

static void __exit deferred_probe_exit(void)
{}
__exitcall();

/**
 * device_is_bound() - Check if device is bound to a driver
 * @dev: device to check
 *
 * Returns true if passed device has already finished probing successfully
 * against a driver.
 *
 * This function must be called with the device lock held.
 */
bool device_is_bound(struct device *dev)
{}

static void driver_bound(struct device *dev)
{}

static ssize_t coredump_store(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{}
static DEVICE_ATTR_WO(coredump);

static int driver_sysfs_add(struct device *dev)
{}

static void driver_sysfs_remove(struct device *dev)
{}

/**
 * device_bind_driver - bind a driver to one device.
 * @dev: device.
 *
 * Allow manual attachment of a driver to a device.
 * Caller must have already set @dev->driver.
 *
 * Note that this does not modify the bus reference count.
 * Please verify that is accounted for before calling this.
 * (It is ok to call with no other effort from a driver's probe() method.)
 *
 * This function must be called with the device lock held.
 *
 * Callers should prefer to use device_driver_attach() instead.
 */
int device_bind_driver(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

static atomic_t probe_count =;
static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);

static ssize_t state_synced_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{}

static ssize_t state_synced_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{}
static DEVICE_ATTR_RW(state_synced);

static void device_unbind_cleanup(struct device *dev)
{}

static void device_remove(struct device *dev)
{}

static int call_driver_probe(struct device *dev, const struct device_driver *drv)
{}

static int really_probe(struct device *dev, const struct device_driver *drv)
{}

/*
 * For initcall_debug, show the driver probe time.
 */
static int really_probe_debug(struct device *dev, const struct device_driver *drv)
{}

/**
 * driver_probe_done
 * Determine if the probe sequence is finished or not.
 *
 * Should somehow figure out how to use a semaphore, not an atomic variable...
 */
bool __init driver_probe_done(void)
{}

/**
 * wait_for_device_probe
 * Wait for device probing to be completed.
 */
void wait_for_device_probe(void)
{}
EXPORT_SYMBOL_GPL();

static int __driver_probe_device(const struct device_driver *drv, struct device *dev)
{}

/**
 * driver_probe_device - attempt to bind device & driver together
 * @drv: driver to bind a device to
 * @dev: device to try to bind to the driver
 *
 * This function returns -ENODEV if the device is not registered, -EBUSY if it
 * already has a driver, 0 if the device is bound successfully and a positive
 * (inverted) error code for failures from the ->probe method.
 *
 * This function must be called with @dev lock held.  When called for a
 * USB interface, @dev->parent lock must be held as well.
 *
 * If the device has a parent, runtime-resume the parent before driver probing.
 */
static int driver_probe_device(const struct device_driver *drv, struct device *dev)
{}

static inline bool cmdline_requested_async_probing(const char *drv_name)
{}

/* The option format is "driver_async_probe=drv_name1,drv_name2,..." */
static int __init save_async_options(char *buf)
{}
__setup();

static bool driver_allows_async_probing(const struct device_driver *drv)
{}

struct device_attach_data {};

static int __device_attach_driver(struct device_driver *drv, void *_data)
{}

static void __device_attach_async_helper(void *_dev, async_cookie_t cookie)
{}

static int __device_attach(struct device *dev, bool allow_async)
{}

/**
 * device_attach - try to attach device to a driver.
 * @dev: device.
 *
 * Walk the list of drivers that the bus has and call
 * driver_probe_device() for each pair. If a compatible
 * pair is found, break out and return.
 *
 * Returns 1 if the device was bound to a driver;
 * 0 if no matching driver was found;
 * -ENODEV if the device is not registered.
 *
 * When called for a USB interface, @dev->parent lock must be held.
 */
int device_attach(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

void device_initial_probe(struct device *dev)
{}

/*
 * __device_driver_lock - acquire locks needed to manipulate dev->drv
 * @dev: Device we will update driver info for
 * @parent: Parent device. Needed if the bus requires parent lock
 *
 * This function will take the required locks for manipulating dev->drv.
 * Normally this will just be the @dev lock, but when called for a USB
 * interface, @parent lock will be held as well.
 */
static void __device_driver_lock(struct device *dev, struct device *parent)
{}

/*
 * __device_driver_unlock - release locks needed to manipulate dev->drv
 * @dev: Device we will update driver info for
 * @parent: Parent device. Needed if the bus requires parent lock
 *
 * This function will release the required locks for manipulating dev->drv.
 * Normally this will just be the @dev lock, but when called for a
 * USB interface, @parent lock will be released as well.
 */
static void __device_driver_unlock(struct device *dev, struct device *parent)
{}

/**
 * device_driver_attach - attach a specific driver to a specific device
 * @drv: Driver to attach
 * @dev: Device to attach it to
 *
 * Manually attach driver to a device. Will acquire both @dev lock and
 * @dev->parent lock if needed. Returns 0 on success, -ERR on failure.
 */
int device_driver_attach(const struct device_driver *drv, struct device *dev)
{}
EXPORT_SYMBOL_GPL();

static void __driver_attach_async_helper(void *_dev, async_cookie_t cookie)
{}

static int __driver_attach(struct device *dev, void *data)
{}

/**
 * driver_attach - try to bind driver to devices.
 * @drv: driver.
 *
 * Walk the list of devices that the bus has on it and try to
 * match the driver with each one.  If driver_probe_device()
 * returns 0 and the @dev->driver is set, we've found a
 * compatible pair.
 */
int driver_attach(const struct device_driver *drv)
{}
EXPORT_SYMBOL_GPL();

/*
 * __device_release_driver() must be called with @dev lock held.
 * When called for a USB interface, @dev->parent lock must be held as well.
 */
static void __device_release_driver(struct device *dev, struct device *parent)
{}

void device_release_driver_internal(struct device *dev,
				    const struct device_driver *drv,
				    struct device *parent)
{}

/**
 * device_release_driver - manually detach device from driver.
 * @dev: device.
 *
 * Manually detach device from driver.
 * When called for a USB interface, @dev->parent lock must be held.
 *
 * If this function is to be called with @dev->parent lock held, ensure that
 * the device's consumers are unbound in advance or that their locks can be
 * acquired under the @dev->parent lock.
 */
void device_release_driver(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/**
 * device_driver_detach - detach driver from a specific device
 * @dev: device to detach driver from
 *
 * Detach driver from device. Will acquire both @dev lock and @dev->parent
 * lock if needed.
 */
void device_driver_detach(struct device *dev)
{}

/**
 * driver_detach - detach driver from all devices it controls.
 * @drv: driver.
 */
void driver_detach(const struct device_driver *drv)
{}