linux/drivers/base/attribute_container.c

// SPDX-License-Identifier: GPL-2.0
/*
 * attribute_container.c - implementation of a simple container for classes
 *
 * Copyright (c) 2005 - James Bottomley <[email protected]>
 *
 * The basic idea here is to enable a device to be attached to an
 * aritrary numer of classes without having to allocate storage for them.
 * Instead, the contained classes select the devices they need to attach
 * to via a matching function.
 */

#include <linux/attribute_container.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>

#include "base.h"

/* This is a private structure used to tie the classdev and the
 * container .. it should never be visible outside this file */
struct internal_container {};

static void internal_container_klist_get(struct klist_node *n)
{}

static void internal_container_klist_put(struct klist_node *n)
{}


/**
 * attribute_container_classdev_to_container - given a classdev, return the container
 *
 * @classdev: the class device created by attribute_container_add_device.
 *
 * Returns the container associated with this classdev.
 */
struct attribute_container *
attribute_container_classdev_to_container(struct device *classdev)
{}
EXPORT_SYMBOL_GPL();

static LIST_HEAD(attribute_container_list);

static DEFINE_MUTEX(attribute_container_mutex);

/**
 * attribute_container_register - register an attribute container
 *
 * @cont: The container to register.  This must be allocated by the
 *        callee and should also be zeroed by it.
 */
int
attribute_container_register(struct attribute_container *cont)
{}
EXPORT_SYMBOL_GPL();

/**
 * attribute_container_unregister - remove a container registration
 *
 * @cont: previously registered container to remove
 */
int
attribute_container_unregister(struct attribute_container *cont)
{}
EXPORT_SYMBOL_GPL();

/* private function used as class release */
static void attribute_container_release(struct device *classdev)
{}

/**
 * attribute_container_add_device - see if any container is interested in dev
 *
 * @dev: device to add attributes to
 * @fn:	 function to trigger addition of class device.
 *
 * This function allocates storage for the class device(s) to be
 * attached to dev (one for each matching attribute_container).  If no
 * fn is provided, the code will simply register the class device via
 * device_add.  If a function is provided, it is expected to add
 * the class device at the appropriate time.  One of the things that
 * might be necessary is to allocate and initialise the classdev and
 * then add it a later time.  To do this, call this routine for
 * allocation and initialisation and then use
 * attribute_container_device_trigger() to call device_add() on
 * it.  Note: after this, the class device contains a reference to dev
 * which is not relinquished until the release of the classdev.
 */
void
attribute_container_add_device(struct device *dev,
			       int (*fn)(struct attribute_container *,
					 struct device *,
					 struct device *))
{}

/* FIXME: can't break out of this unless klist_iter_exit is also
 * called before doing the break
 */
#define klist_for_each_entry(pos, head, member, iter)


/**
 * attribute_container_remove_device - make device eligible for removal.
 *
 * @dev:  The generic device
 * @fn:	  A function to call to remove the device
 *
 * This routine triggers device removal.  If fn is NULL, then it is
 * simply done via device_unregister (note that if something
 * still has a reference to the classdev, then the memory occupied
 * will not be freed until the classdev is released).  If you want a
 * two phase release: remove from visibility and then delete the
 * device, then you should use this routine with a fn that calls
 * device_del() and then use attribute_container_device_trigger()
 * to do the final put on the classdev.
 */
void
attribute_container_remove_device(struct device *dev,
				  void (*fn)(struct attribute_container *,
					     struct device *,
					     struct device *))
{}

static int
do_attribute_container_device_trigger_safe(struct device *dev,
					   struct attribute_container *cont,
					   int (*fn)(struct attribute_container *,
						     struct device *, struct device *),
					   int (*undo)(struct attribute_container *,
						       struct device *, struct device *))
{}

/**
 * attribute_container_device_trigger_safe - execute a trigger for each
 * matching classdev or fail all of them.
 *
 * @dev:  The generic device to run the trigger for
 * @fn:   the function to execute for each classdev.
 * @undo: A function to undo the work previously done in case of error
 *
 * This function is a safe version of
 * attribute_container_device_trigger. It stops on the first error and
 * undo the partial work that has been done, on previous classdev.  It
 * is guaranteed that either they all succeeded, or none of them
 * succeeded.
 */
int
attribute_container_device_trigger_safe(struct device *dev,
					int (*fn)(struct attribute_container *,
						  struct device *,
						  struct device *),
					int (*undo)(struct attribute_container *,
						    struct device *,
						    struct device *))
{}

/**
 * attribute_container_device_trigger - execute a trigger for each matching classdev
 *
 * @dev:  The generic device to run the trigger for
 * @fn:   the function to execute for each classdev.
 *
 * This function is for executing a trigger when you need to know both
 * the container and the classdev.  If you only care about the
 * container, then use attribute_container_trigger() instead.
 */
void
attribute_container_device_trigger(struct device *dev,
				   int (*fn)(struct attribute_container *,
					     struct device *,
					     struct device *))
{}

/**
 * attribute_container_trigger - trigger a function for each matching container
 *
 * @dev:  The generic device to activate the trigger for
 * @fn:	  the function to trigger
 *
 * This routine triggers a function that only needs to know the
 * matching containers (not the classdev) associated with a device.
 * It is more lightweight than attribute_container_device_trigger, so
 * should be used in preference unless the triggering function
 * actually needs to know the classdev.
 */
void
attribute_container_trigger(struct device *dev,
			    int (*fn)(struct attribute_container *,
				      struct device *))
{}

/**
 * attribute_container_add_attrs - add attributes
 *
 * @classdev: The class device
 *
 * This simply creates all the class device sysfs files from the
 * attributes listed in the container
 */
int
attribute_container_add_attrs(struct device *classdev)
{}

/**
 * attribute_container_add_class_device - same function as device_add
 *
 * @classdev:	the class device to add
 *
 * This performs essentially the same function as device_add except for
 * attribute containers, namely add the classdev to the system and then
 * create the attribute files
 */
int
attribute_container_add_class_device(struct device *classdev)
{}

/**
 * attribute_container_add_class_device_adapter - simple adapter for triggers
 *
 * @cont: the container to register.
 * @dev:  the generic device to activate the trigger for
 * @classdev:	the class device to add
 *
 * This function is identical to attribute_container_add_class_device except
 * that it is designed to be called from the triggers
 */
int
attribute_container_add_class_device_adapter(struct attribute_container *cont,
					     struct device *dev,
					     struct device *classdev)
{}

/**
 * attribute_container_remove_attrs - remove any attribute files
 *
 * @classdev: The class device to remove the files from
 *
 */
void
attribute_container_remove_attrs(struct device *classdev)
{}

/**
 * attribute_container_class_device_del - equivalent of class_device_del
 *
 * @classdev: the class device
 *
 * This function simply removes all the attribute files and then calls
 * device_del.
 */
void
attribute_container_class_device_del(struct device *classdev)
{}

/**
 * attribute_container_find_class_device - find the corresponding class_device
 *
 * @cont:	the container
 * @dev:	the generic device
 *
 * Looks up the device in the container's list of class devices and returns
 * the corresponding class_device.
 */
struct device *
attribute_container_find_class_device(struct attribute_container *cont,
				      struct device *dev)
{}
EXPORT_SYMBOL_GPL();