linux/include/linux/pwm.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_PWM_H
#define __LINUX_PWM_H

#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>

MODULE_IMPORT_NS();

struct pwm_chip;

/**
 * enum pwm_polarity - polarity of a PWM signal
 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
 * cycle, followed by a low signal for the remainder of the pulse
 * period
 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
 * cycle, followed by a high signal for the remainder of the pulse
 * period
 */
enum pwm_polarity {};

/**
 * struct pwm_args - board-dependent PWM arguments
 * @period: reference period
 * @polarity: reference polarity
 *
 * This structure describes board-dependent arguments attached to a PWM
 * device. These arguments are usually retrieved from the PWM lookup table or
 * device tree.
 *
 * Do not confuse this with the PWM state: PWM arguments represent the initial
 * configuration that users want to use on this PWM device rather than the
 * current PWM hardware state.
 */
struct pwm_args {};

enum {};

/*
 * struct pwm_state - state of a PWM channel
 * @period: PWM period (in nanoseconds)
 * @duty_cycle: PWM duty cycle (in nanoseconds)
 * @polarity: PWM polarity
 * @enabled: PWM enabled status
 * @usage_power: If set, the PWM driver is only required to maintain the power
 *               output but has more freedom regarding signal form.
 *               If supported, the signal can be optimized, for example to
 *               improve EMI by phase shifting individual channels.
 */
struct pwm_state {};

/**
 * struct pwm_device - PWM channel object
 * @label: name of the PWM device
 * @flags: flags associated with the PWM device
 * @hwpwm: per-chip relative index of the PWM device
 * @chip: PWM chip providing this PWM device
 * @args: PWM arguments
 * @state: last applied state
 * @last: last implemented state (for PWM_DEBUG)
 */
struct pwm_device {};

/**
 * pwm_get_state() - retrieve the current PWM state
 * @pwm: PWM device
 * @state: state to fill with the current PWM state
 *
 * The returned PWM state represents the state that was applied by a previous call to
 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
 * state (if supported) or the default settings.
 */
static inline void pwm_get_state(const struct pwm_device *pwm,
				 struct pwm_state *state)
{}

static inline bool pwm_is_enabled(const struct pwm_device *pwm)
{}

static inline u64 pwm_get_period(const struct pwm_device *pwm)
{}

static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
{}

static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
{}

static inline void pwm_get_args(const struct pwm_device *pwm,
				struct pwm_args *args)
{}

/**
 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
 * @pwm: PWM device
 * @state: state to fill with the prepared PWM state
 *
 * This functions prepares a state that can later be tweaked and applied
 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
 * that first retrieves the current PWM state and the replaces the period
 * and polarity fields with the reference values defined in pwm->args.
 * Once the function returns, you can adjust the ->enabled and ->duty_cycle
 * fields according to your needs before calling pwm_apply_might_sleep().
 *
 * ->duty_cycle is initially set to zero to avoid cases where the current
 * ->duty_cycle value exceed the pwm_args->period one, which would trigger
 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
 * first.
 */
static inline void pwm_init_state(const struct pwm_device *pwm,
				  struct pwm_state *state)
{}

/**
 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
 * @state: PWM state to extract the duty cycle from
 * @scale: target scale of the relative duty cycle
 *
 * This functions converts the absolute duty cycle stored in @state (expressed
 * in nanosecond) into a value relative to the period.
 *
 * For example if you want to get the duty_cycle expressed in percent, call:
 *
 * pwm_get_state(pwm, &state);
 * duty = pwm_get_relative_duty_cycle(&state, 100);
 */
static inline unsigned int
pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
{}

/**
 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
 * @state: PWM state to fill
 * @duty_cycle: relative duty cycle value
 * @scale: scale in which @duty_cycle is expressed
 *
 * This functions converts a relative into an absolute duty cycle (expressed
 * in nanoseconds), and puts the result in state->duty_cycle.
 *
 * For example if you want to configure a 50% duty cycle, call:
 *
 * pwm_init_state(pwm, &state);
 * pwm_set_relative_duty_cycle(&state, 50, 100);
 * pwm_apply_might_sleep(pwm, &state);
 *
 * This functions returns -EINVAL if @duty_cycle and/or @scale are
 * inconsistent (@scale == 0 or @duty_cycle > @scale).
 */
static inline int
pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
			    unsigned int scale)
{}

/**
 * struct pwm_capture - PWM capture data
 * @period: period of the PWM signal (in nanoseconds)
 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
 */
struct pwm_capture {};

/**
 * struct pwm_ops - PWM controller operations
 * @request: optional hook for requesting a PWM
 * @free: optional hook for freeing a PWM
 * @capture: capture and report PWM signal
 * @apply: atomically apply a new PWM config
 * @get_state: get the current PWM state.
 */
struct pwm_ops {};

/**
 * struct pwm_chip - abstract a PWM controller
 * @dev: device providing the PWMs
 * @ops: callbacks for this PWM controller
 * @owner: module providing this chip
 * @id: unique number of this PWM chip
 * @npwm: number of PWMs controlled by this chip
 * @of_xlate: request a PWM device given a device tree PWM specifier
 * @atomic: can the driver's ->apply() be called in atomic context
 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
 * @pwms: array of PWM devices allocated by the framework
 */
struct pwm_chip {};

static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
{}

static inline void *pwmchip_get_drvdata(struct pwm_chip *chip)
{}

static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
{}

#if IS_ENABLED(CONFIG_PWM)
/* PWM user APIs */
int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
int pwm_adjust_config(struct pwm_device *pwm);

/**
 * pwm_config() - change a PWM device configuration
 * @pwm: PWM device
 * @duty_ns: "on" time (in nanoseconds)
 * @period_ns: duration (in nanoseconds) of one cycle
 *
 * Returns: 0 on success or a negative error code on failure.
 */
static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
			     int period_ns)
{}

/**
 * pwm_enable() - start a PWM output toggling
 * @pwm: PWM device
 *
 * Returns: 0 on success or a negative error code on failure.
 */
static inline int pwm_enable(struct pwm_device *pwm)
{}

/**
 * pwm_disable() - stop a PWM output toggling
 * @pwm: PWM device
 */
static inline void pwm_disable(struct pwm_device *pwm)
{}

/**
 * pwm_might_sleep() - is pwm_apply_atomic() supported?
 * @pwm: PWM device
 *
 * Returns: false if pwm_apply_atomic() can be called from atomic context.
 */
static inline bool pwm_might_sleep(struct pwm_device *pwm)
{}

/* PWM provider APIs */
int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
		unsigned long timeout);

void pwmchip_put(struct pwm_chip *chip);
struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);

int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
#define pwmchip_add(chip)
void pwmchip_remove(struct pwm_chip *chip);

int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
#define devm_pwmchip_add(dev, chip)

struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
		const struct of_phandle_args *args);
struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
				       const struct of_phandle_args *args);

struct pwm_device *pwm_get(struct device *dev, const char *con_id);
void pwm_put(struct pwm_device *pwm);

struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
				       struct fwnode_handle *fwnode,
				       const char *con_id);
#else
static inline bool pwm_might_sleep(struct pwm_device *pwm)
{
	return true;
}

static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
					const struct pwm_state *state)
{
	might_sleep();
	return -EOPNOTSUPP;
}

static inline int pwm_apply_atomic(struct pwm_device *pwm,
				   const struct pwm_state *state)
{
	return -EOPNOTSUPP;
}

static inline int pwm_adjust_config(struct pwm_device *pwm)
{
	return -EOPNOTSUPP;
}

static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
			     int period_ns)
{
	might_sleep();
	return -EINVAL;
}

static inline int pwm_enable(struct pwm_device *pwm)
{
	might_sleep();
	return -EINVAL;
}

static inline void pwm_disable(struct pwm_device *pwm)
{
	might_sleep();
}

static inline int pwm_capture(struct pwm_device *pwm,
			      struct pwm_capture *result,
			      unsigned long timeout)
{
	return -EINVAL;
}

static inline void pwmchip_put(struct pwm_chip *chip)
{
}

static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
					     unsigned int npwm,
					     size_t sizeof_priv)
{
	return ERR_PTR(-EINVAL);
}

static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
						  unsigned int npwm,
						  size_t sizeof_priv)
{
	return pwmchip_alloc(parent, npwm, sizeof_priv);
}

static inline int pwmchip_add(struct pwm_chip *chip)
{
	return -EINVAL;
}

static inline int pwmchip_remove(struct pwm_chip *chip)
{
	return -EINVAL;
}

static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
{
	return -EINVAL;
}

static inline struct pwm_device *pwm_get(struct device *dev,
					 const char *consumer)
{
	might_sleep();
	return ERR_PTR(-ENODEV);
}

static inline void pwm_put(struct pwm_device *pwm)
{
	might_sleep();
}

static inline struct pwm_device *devm_pwm_get(struct device *dev,
					      const char *consumer)
{
	might_sleep();
	return ERR_PTR(-ENODEV);
}

static inline struct pwm_device *
devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
		    const char *con_id)
{
	might_sleep();
	return ERR_PTR(-ENODEV);
}
#endif

static inline void pwm_apply_args(struct pwm_device *pwm)
{}

struct pwm_lookup {};

#define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id,	\
			       _period, _polarity, _module)

#define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity)

#if IS_ENABLED(CONFIG_PWM)
void pwm_add_table(struct pwm_lookup *table, size_t num);
void pwm_remove_table(struct pwm_lookup *table, size_t num);
#else
static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
{
}

static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
{
}
#endif

#endif /* __LINUX_PWM_H */